K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2023

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=\left(\dfrac{7}{2}\right)^2-2.3\)

\(=\dfrac{25}{4}\)

x1^2+x2^2=(x1+x2)^2-2x1x2

=49/4-2*3=49/4-6

=25/4

12 tháng 3 2023

\(x^2-\left(2a-1\right)x-4a-3=0\)

\(\Delta=\left(2a-1\right)^2+4\left(4a+3\right)\)

\(=4a^2-4a+1+16a+12\)

\(=4a^2+12a+13=\left(2a+3\right)^2+4>0\)

Vì \(\Delta>0\Rightarrow\) phương trình có 2 nghiệm phân biệt với mọi a

Vì phương trình có 2 nghiệm phân biệt, áp dụng hệ thức Vi-ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2a-1\\x_1.x_2=-4a-3\end{matrix}\right.\) ⇒ \(x_1.x_2+2\left(x_1+x_2\right)=-5\)

Ta có:

\(A=x_1^2+x^2_2=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=\left(2a-1\right)^2-2\left(-4a-3\right)\)

\(=4a^2-4a+1+8a+6\)

\(=\left(2a+1\right)^2+6\)

Vì \(\left(2a+1\right)^2\ge0\forall a\)

\(A\ge6\)

Min A=6 <=> \(a=-\dfrac{1}{2}\)

1) Bạn tự giải

2) Ta có: \(\Delta=4m^2-8m+9>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=m-2\end{matrix}\right.\) (*)

Mặt khác: \(x_1^2+x_2^2=2018\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2018\)

\(\Rightarrow4m^2-4m+1-2m+4=2018\)

\(\Leftrightarrow4m^2-6m-2013=0\) \(\Leftrightarrow...\)

c)  Từ (*) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2m-1\\2x_1x_2=2m-4\end{matrix}\right.\) \(\Rightarrow x_1+x_2-2x_1x_2=3\) 

                                         (Không phụ thuộc vào m)

Δ=(-2)^2-4(-2m+1)

=4+8m-4=8m

Để phương trình có nghiệm thì 8m>=0

=>m>=0

\(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

=>\(2\cdot\left(x_1\cdot x_2\right)^2-x_2^2-x_1^2=8\)

=>\(2\cdot\left(-2m+1\right)^2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=8\)

=>\(2\left(2m-1\right)^2-\left[2^2-2\left(-2m+1\right)\right]=8\)

=>\(8m^2-8m+2-4+2\left(-2m+1\right)=8\)

=>\(8m^2-8m-2-4m+2-8=0\)

=>8m^2-12m-8=0

=>m=2 hoặc m=-1/2(loại)

11 tháng 6 2021

a=1,b=-4,c=m-1

Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8

Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6

Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0

Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2

Vậy Với m=6 thì pt 1 có nghiệm kép x=1

b) Theo hệ thức Vi-et 

Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2

x1\(^2\)+x2\(^2\)=9

<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9

<=>16-2m+4=9

<=>2m=1

<=> m=\(\dfrac{1}{2}\)

Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9

12 tháng 6 2021

câu b) m phải =\(\dfrac{11}{2}\) chứ ạ

6 tháng 4 2023

`a)` Ptr `(1)` có nghiệm `<=>[-(n-1)]^2-(-n-3) >= 0`

              `<=>n^2-2n+1+n+3 >= 0<=>n^2-n+4 >= 0` (LĐ `AA n`)

 `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

Ta có: `x_1 ^2+x_2 ^2=10`

`<=>(x_1+x_2)^2-2x_1.x_2=10`

`<=>(2n-2)^2-2.(-n-3)=10`

`<=>4n^2-8n+4+2n+6-10=0`

`<=>[(n=3/2),(n=0):}`

`b)` Có: `{(x_1+x_2=-b/a=2n-2),(x_1.x_2=c/a=-n-3):}`

`<=>{(x_1+x_2=2n-2),(2x_1.x_2=-2n-3):}`

  `=>x_1+x_2+2x_1.x_2=-5`

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

13 tháng 3 2022

phương trình bạn copy thiếu ak bạn ơi? 

13 tháng 3 2022

mình ghi nhầm dấu mình đã sửa lại rồi ạ

 

a: Khi m=-3 thì (1) trở thành \(x^2-2\cdot\left(-2\right)x-\left(-3\right)-3=0\)

=>x2+4x=0

=>x(x+4)=0

=>x=0 hoặc x=-4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(-m-3\right)\)

\(=4m^2-8m+4+4m+12\)

\(=4m^2-4m+16\)

\(=\left(2m-1\right)^2+15>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(x_1^2+x_2^2=10\)

nên \(\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=0\)

\(\Leftrightarrow4m^2-8m+4+2m+6=0\)

\(\Leftrightarrow4m^2-6m+10=0\)

\(\text{Δ}_1=\left(-6\right)^2-4\cdot4\cdot10=36-160< 0\)

Do đó: Phương trình vô nghiệm

4 tháng 9 2017

c) Theo hệ thức Vi- et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

A =  x 1 2 + x 2 2 - 6 x 1 x 2  = x 1 + x 2 2 - 8 x 1 x 2  

= 2 - m 2  - 8(-m + 1) = m 2 - 4m + 4 + 8m - 8

=  m 2  + 4m - 4 = m + 2 2 - 8

Ta có: (m + 2)2 ≥ 0 ∀ m

⇒  m + 2 2 - 8 ≥ -8 ∀ m ⇔ A ≥ -8 ∀ m

Dấu bằng xảy ra khi  m + 2 2  = 0 ⇔ m= -2

Vậy GTNN của A là -8, đạt được khi m = -2