K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

\(\left(x+1\right)^2-\left(2-x\right)^2=4\)

\(\Leftrightarrow\left(x+1+2-x\right)\left(x+1-2+x\right)=4\)

\(\Leftrightarrow3\left(2x-1\right)=4\)

\(\Leftrightarrow2x-1=\frac{4}{3}\)

\(\Leftrightarrow2x=\frac{7}{3}\)

\(\Leftrightarrow x=\frac{7}{3}:2=\frac{7}{6}\)

30 tháng 8 2016

          x2 + 2x + 1 - 4 + 4x - x2 = 4

<=> 6x = 7

<=> x = \(\frac{7}{6}\)

16 tháng 10 2020

a, \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=\left(x^2-x+9\right)\left(x-3\right)\)

b, \(x^4-2x^3+2x-1=x^4-x^3-x^3+x^2-x^2+x-1=\left(x^3-x^2-x+1\right)\left(x-1\right)\)

\(=\left(x-1\right)^3\left(x+1\right)\)

...

NV
9 tháng 10 2019

a/ \(=\left(x^2-1\right)^2+x\left(x^2-1\right)-2x\left(x^2-1\right)-2x^2\)

\(=\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)\)

\(=\left(x^2-2x-1\right)\left(x^2+x-1\right)\)

b/ \(=4\left(x^2+x+1\right)^2+4x\left(x^2+x+1\right)+x\left(x^2+x+1\right)+x^2\)

\(=4\left(x^2+x+1\right)\left(x^2+2x+1\right)+x\left(x^2+2x+1\right)\)

\(=\left(x^2+2x+1\right)\left(4x^2+5x+4\right)\)

\(=\left(x+1\right)^2\left(4x^2+5x+4\right)\)

c/ \(=\left(x^2-x+2\right)^4-x^2\left(x^2-x+2\right)^2-2x^2\left(x^2-x+2\right)^2+2x^4\)

\(=\left(x^2-x+2\right)^2\left[\left(x^2-x+2\right)^2-x^2\right]-2x^2\left[\left(x^2-x+2\right)^2-x^2\right]\)

\(=\left[\left(x^2-x+2\right)^2-x^2\right]\left[\left(x^2-x+2\right)^2-2x^2\right]\)

\(=\left(x^2-2x+2\right)\left(x^2+2\right)\left[\left(x^2-x+2\right)^2-2x^2\right]\)

NV
9 tháng 10 2019

d/

Bạn coi lại đề, với hệ số này ko phân tích được

e/

\(=10\left(x^2-2x+3\right)^4-10x^2\left(x^2-2x+3\right)^2+x^2\left(x^2-2x+3\right)^2-x^4\)

\(=10\left(x^2-2x+3\right)^2\left[\left(x^2-2x+3\right)^2-x^2\right]+x^2\left[\left(x^2-2x+3\right)^2-x^2\right]\)

\(=\left[\left(x^2-2x+3\right)^2-x^2\right]\left[10\left(x^2-2x+3\right)^2+x^2\right]\)

\(=\left(x^2-3x+3\right)\left(x^2-x+3\right)\left[10\left(x^2-2x+3\right)^2+x^2\right]\)

8 tháng 7 2018

\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)

\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)

\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)

26 tháng 8 2018

Thanks bạn

31 tháng 5 2018

3) \(x^2-7x+6=0\)

\(\Leftrightarrow x^2-6x-x+6=0\)

\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

S=\(\left\{6;1\right\}\)

\(\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

a) ĐKXĐ: $x\neq \pm 1$

\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)

b) ĐKXĐ: Với mọi $x\in\mathbb{R}$

\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)

\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)

c) ĐK: $x\neq 1;-2$

\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)

\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)

d) ĐK: $x^2+3x-1\neq 0$

\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)

\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)