Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\frac{11}{12}-\left(\frac{5}{42}-x\right)=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{42}+x=\frac{15}{28}-\frac{11}{12}\)
\(\Leftrightarrow x=\frac{15}{28}-\frac{11}{12}-\frac{11}{12}+\frac{5}{42}\)
\(\Leftrightarrow x=\left(\frac{15}{28}+\frac{5}{42}\right)-\left(\frac{11}{12}+\frac{11}{12}\right)\)
\(\Leftrightarrow x=\frac{55}{84}-\frac{11}{6}\)
\(\Leftrightarrow x=\frac{-33}{28}\)
b, \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
=> x+1 =0 => x =-1
a: \(\dfrac{x-6}{7}+\dfrac{x-7}{8}+\dfrac{x-8}{9}=\dfrac{x-9}{10}+\dfrac{x-10}{11}+\dfrac{x-11}{12}\)
\(\Leftrightarrow\left(\dfrac{x-6}{7}+1\right)+\left(\dfrac{x-7}{8}+1\right)+\left(\dfrac{x-8}{9}+1\right)=\left(\dfrac{x-9}{10}+1\right)+\left(\dfrac{x-10}{11}+1\right)+\left(\dfrac{x-11}{12}+1\right)\)
=>x+1=0
hay x=-1
c: |x-2|=13
=>x-2=13 hoặc x-2=-13
=>x=15 hoặc x=-11
d: \(\Leftrightarrow3\left|x-2\right|+4\left|x-2\right|=2-\dfrac{1}{3}=\dfrac{5}{3}\)
=>7|x-2|=5/3
=>|x-2|=5/21
=>x-2=5/21 hoặc x-2=-5/21
=>x=47/21 hoặc x=37/21
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
=> x + 1 = 0 ( vì 1/10 + 1/11 + 1/12 - 1/13 - 1/14 khac 0 )
=> x = -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
mà 1/10 > 1/13; 1/11>1/14
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
=> x + 1 = 0
x = -1
x+110+x+111+x+112=x+113+x+114x+110+x+111+x+112=x+113+x+114
⇒x+110+x+111+x+112−x+113−x+114=0⇒x+110+x+111+x+112−x+113−x+114=0
⇒(x+1).(110+111+112−113−114)=0⇒(x+1).(110+111+112−113−114)=0
mà 1/10 > 1/13; 1/11>1/14
⇒110+111+112−113−114≠0⇒110+111+112−113−114≠0
=> x + 1 = 0
x = -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow x+1=0\)( do \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\))
\(\Rightarrow x=-1\)
<=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14)
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0)
<=>x= -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne=\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=0-1=-1\)