Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
=> x + 1 = 0 ( vì 1/10 + 1/11 + 1/12 - 1/13 - 1/14 khac 0 )
=> x = -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
mà 1/10 > 1/13; 1/11>1/14
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)
=> x + 1 = 0
x = -1
x+110+x+111+x+112=x+113+x+114x+110+x+111+x+112=x+113+x+114
⇒x+110+x+111+x+112−x+113−x+114=0⇒x+110+x+111+x+112−x+113−x+114=0
⇒(x+1).(110+111+112−113−114)=0⇒(x+1).(110+111+112−113−114)=0
mà 1/10 > 1/13; 1/11>1/14
⇒110+111+112−113−114≠0⇒110+111+112−113−114≠0
=> x + 1 = 0
x = -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
\(\Rightarrow x+1=0\)( do \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\))
\(\Rightarrow x=-1\)
<=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14)
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0)
<=>x= -1
sửa lại đề : tìm x biết : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
dễ thấy \(\frac{1}{10}>\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>\frac{1}{14}\)nên biểu thức trong dấu ngoặc thứ hai khác 0
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)\(\left(x+1\right)\times\dfrac{1}{10}+\left(x+1\right)\times\dfrac{1}{11}+\left(x+1\right)\times\dfrac{1}{12}-\left(x+1\right)\times\dfrac{1}{13}-\left(x+1\right)\times\dfrac{1}{14}=0\)
\(\left(x+1\right)\times\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}>0\)
=> \(x+1=0\)
\(x=0-1\)
\(x=-1\)
\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\\ \Rightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\\ \Rightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\\ \Rightarrow x+1=0\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\right)\\ \Rightarrow x=-1\)
=> (x + 1) : 10 + (x + 1) : 11 + (x + 1) : 12 - (x + 1) : 13 - (x + 1) : 14 = 0
=> (x + 1) ( 1/10 + 1/11 + 1/12 - 1/13 - 1/14 ) = 0
Vì 1/10 + 1/11 + 1/12 - 1/13 - 1/14 > 0
=> x + 1 = 0
=> x = -1
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
=> \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
=> (x+1).(1/10+1/11+1/12-1/13-1/14)=0
=> x+1=0
=> X=-1