K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

1 cách cực ngu 

\(\frac{x+107}{7}+\frac{x+6}{47}+\frac{x+1}{33}+\frac{x+184}{21}=0\)

\(\Leftrightarrow1551\left(x+107\right)+231\left(x+6\right)+329\left(x+1\right)+517\left(x+184\right)=0\)

\(\Leftrightarrow1551x+165957+231x+1386+329x+517x+95128=0\)

\(\Leftrightarrow2628x+262800=0\)

\(\Leftrightarrow2628x=-262800\)

\(\Leftrightarrow x=-100\)

10 tháng 4 2020

Lúc mới đọc đề tớ tưởng x+\(\frac{3}{2}\)chứ. Nhìn lại thì...

10 tháng 4 2020

Câu B đây;vừa bị lag

B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)

\(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1

\(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0

⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0

\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0

⇔ x+36=0

⇔ x=-36

Vậy tập nghiệm của phương trình đã cho là:S={-36}

câu C tương tự nhé

19 tháng 6 2019

\(a,\)( sửa lại xíu đề cho đúng nhé )

\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)

\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)

\(\Rightarrow x=1\)

19 tháng 6 2019

\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)

Đặt \(x^2+10x+16=a\)

\(\Rightarrow a\left(a+8\right)=-16\)

\(\Rightarrow a^2+8a+16=0\)

\(\Rightarrow\left(a+4\right)^2=0\)

\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)

\(\Rightarrow x^2+10x+25-25=0\)

\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)

\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

24 tháng 11 2021

câu a ) a*x^19+1 

câu b ) 

đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b

Ta có: x67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+bx67+x47+x27+x7+x+1=(x2−1).Q(x)+ax+b

Cho x=1 rồi x=-1 ta được: \hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b\hept{1+1+1+1+1+1=a+b−1−1−1−1−1+1=−a+b

⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1⇔\hept{a+b=6−a+b=−4⇔\hept{a=5b=1

Vậy dư trong phép chia trên là 5x+1

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

31 tháng 8 2015

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0 

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52 

=> 19x = -4

=> x = -4/19

d/ 20x2 - 16x - 34 = 10x2 + 3x - 34

=> 10x2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 

hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10

Vậy x = 0 ; x = 19/10

2 tháng 1 2016

Rút gọn hết ta được :

a/ 41x - 17 = -21

=> 41x = -4 => x = 4/41

b/ 34x - 17 = 0

=> 34x = 17

=> x = 17/34 = 1/2

c/ 19x + 56 = 52

=> 19x = -4

=> x = -4/19

d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34

=> 10x 2 - 19x = 0

=> x(10x - 19) = 0

=> x = 0 hoặc 10x - 19 = 0

=> 10x = 19

=> x = 19/10

Vậy x = 0 ; x = 19/10 

3 tháng 1 2021

a) 3x - 2(5 + 2x) =45 - 2x

=> 3x - 10 - 4x = 45 - 2x

=> 3x - 4x + 2x = 45 + 10

=> x = 55

b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)

=> 5(2x + 17) = 3(x - 3)

=> 10x + 85 = 3x - 9

=> 7x = -94

=> x = -94/7

c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)

=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)

=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)

=> (-11x - 3).7 = (4x - 33).12

= -77x - 21 = 48x - 396

=> x = 3

d) (x - 1)(5x + 3) = (3x - 8)(x - 1)

=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0

=> (x - 1)(2x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\) 

e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0

=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0

=> (x - 1)(4x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)

f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\) 

=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))

=> x = 50

3 tháng 1 2021

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)

\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)

f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)

\(\Leftrightarrow x=-66\)

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

25 tháng 6 2020

\(\frac{x-21}{1999}+\frac{x-33}{1987}\le\frac{x+6}{2026}+\frac{x+11}{2031}\)

<=> \(\frac{x-21}{1999}-1+\frac{x-33}{1987}-1\le\frac{x+6}{2026}-1+\frac{x+11}{2031}-1\)

<,=>. \(\frac{x-2020}{1999}+\frac{x-2020}{1987}\le\frac{x-2020}{2026}+\frac{x-2020}{2031}\)

<=> \(\left(x-2020\right)\left(\frac{1}{1999}+\frac{1}{1987}-\frac{1}{2026}-\frac{1}{2031}\right)\le0\) (1) 

Vì \(\frac{1}{1999}+\frac{1}{1987}-\frac{1}{2026}-\frac{1}{2031}\ge0\)

Nên (1) \(x-2020\le0\Leftrightarrow x\le2020\)