Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x+y=10\) mà \(x=y\) nên: \(x=y=\dfrac{10}{2}=5\)
2) \(2x+3y=180\) mà \(x=y\)
Ta có: \(2y+3y=180\Rightarrow5y=180\Rightarrow y=180:5=36\)
Vậy \(x=y=36\)
3) \(x+y=180\) mà \(x=y\) nên: \(x=y=\dfrac{180}{2}=90\)
4) \(3x+5y=13\) mà \(y=2x\) ta có:
\(3x+5\cdot2x=13\Rightarrow13x=13\Rightarrow x=1\)
\(y=2x=2\cdot1=2\)
Các câu còn lại bạn làm tương tự
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
a) Ta có : \(A=\dfrac{x^2+y^2+5}{x^2+y^2+3}=1+\dfrac{2}{x^2+y^2+3}\)
Dễ thấy \(x^2\ge0;y^2\ge0\forall x;y\)
nên \(x^2+y^2+3\ge3\)
\(\Leftrightarrow\dfrac{1}{x^2+y^2+3}\le\dfrac{1}{3}\)
<=> \(\dfrac{2}{x^2+y^2+3}\le\dfrac{2}{3}\)
\(\Leftrightarrow A=1+\dfrac{2}{x^2+y^2+3}\le\dfrac{5}{3}\)
\(\Rightarrow A_{max}=\dfrac{5}{3}\)(Dấu "=" xảy ra khi x = y = 0)
Lời giải:
Vì $ƯCLN(2x+5, 3x+2)=y$
$\Rightarrow 2x+5\vdots y; 3x+2\vdots y$
$\Rightarrow 3(2x+5)-2(3x+2)\vdots y$
$\Rightarrow 11\vdots y\Rightarrow y=1$ hoặc $y=11$
Nếu $y=1$ thì $2x+5\not\vdots 11$
$\Rightarrow 2x-6\not\vdots 11\Rightarrow 2(x-3)\not\vdots 11$
$\Rightarrow x-3\not\vdots 11$
$\Rightarrow x\neq 11k+3$
Vậy với mọi $y=1$ thì $x>10; x\neq 11k+3$ với $k$ là số tự nhiên bất kỳ.
Nếu $y=11$
$\Rightarrow 2x+5\vdots 11$
$\Rightarrow 2x-6\vdots 11\Rightarrow 2(x-3)\vdots 11\Rightarrow x-3\vdots 11$
$\Rightarrow x=11k+3$
Vì $x>10$ nên $k\geq 1$
Vậy với $y=11$ thì $x=11k+3$ với $k$ là stn $\geq 1$