K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2020

Ta có : \(x=2011\Rightarrow x+1=2012\)

Khi đó :

\(x^{10}-2012x^9+2012x^8-2012x^7+....-2012x+2012\)

\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^9-x^8+x^8+x^7-x^7-x^6+...-x^2-x+x+1\)

\(=1\)

25 tháng 6 2016

Với x = 2011 => x + 1 = 2012

=> A = x10 - ( x + 1 )x9 + ( x + 1)x8 - ( x+ 1)x7 + ( x + 1 )x6 - ( x + 1 )x5+ ( x + 1 )x4 - ( x + 1 )x3 + ( x + 1)x2 - ( x + 1 )x + 2012

        = x10 - x10 - x9 + x9 + x8 - x8 - x+ x7+ x6- x6 - x5 + x5 + x4 - x4 - x3 + x+ x2 - x- x + 2012

        = -x  + 2012

Thay x=2011 vào ta được: ( - 2011 ) + 2012 = 1

10 tháng 3 2019

bài này chị bt làm rồi nhưng làm hơi dài

chị bận tối chị viết cho nha

hihihhihhi

NV
28 tháng 11 2019

Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)

\(f\left(1\right)=1+2-3-4+...-2011-2012\)

\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)

\(=-2012\)

Vậy số dư là \(-2012\)

AH
Akai Haruma
Giáo viên
26 tháng 9 2018

Lời giải:

Ta có:
\(x^4+2012x^2-2011x+2012=x^4+x^2+2011(x^2-x+\frac{1}{4})+\frac{6037}{4}\)

\(=x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\)

\(x^4\geq 0,x^2\geq 0, (x-\frac{1}{2})^2\geq 0, \forall x\)

\(\Rightarrow x^4+x^2+2011(x-\frac{1}{2})^2+\frac{6037}{4}\geq \frac{6037}{4}>0\) với mọi $x$

Ta có đpcm.

18 tháng 8 2019

x4+2012x2+2011x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

1 tháng 9 2020

\(x^4+2012x^2+2011x+2012\)

\(=x^4-x+2012x^2+2012x+2012\)

\(=x.\left(x-1\right)\left(x^2+x+1\right)+2012.\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2012\right)\)

15 tháng 12 2022

x4+2012x2+2012x+2012

=(x4-x)+(2012x2+2012x+2012)

=x(x3-1)+2012(x2+x+1)

=x(x-1) (x2+x+1) + 2012 (x2+x+1)

=(x2+x+1) [x(x-1)+2012]

=(x2+x+1) (x2-x+2012)

18 tháng 7 2015

bạn tick đúng cho mình trước đi rồi mình giải cho

18 tháng 7 2015

12/

x=2011

=>2012=x+1

thay x+1=2012 ta được:

x2011-(x+1).x2010+(x+1).x2009-(x+1)x2008+...-(x+1).x2+(x+1).x-1

=x2011-x2011-x2010+x2010+x2009-x2009-x2008+...-x3-x2+x2+x-1

=x-1

thay x=2011 ta được:

2011-1=2010

Vậy x2011-2012x2010+2012x2009-2012x2008+...-2012x2+2012x-1=2010