Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình dạng toán tử : \(\widehat{H}\)\(\Psi\) = E\(\Psi\)
Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)
thay vào từng bài cụ thể ta có :
a.sin(x+y+z)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)
=\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)
=\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)
= -3.sin(x+y+z)
\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.
b.cos(xy+yz+zx)
\(\bigtriangledown\)2 f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)+ \(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)
=\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)
=\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)
=- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))
=-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)
\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.
c.exp(x2+y2+z2)
Ta có hệ thức De_Broglie: λ= h/m.chmc
Đối với vật thể có khối lượng m và vận tốc v ta có: λ= h/m.vhmv
a) Ta có m=1g=10-3kg và v=1,0 cm/s=10-2m/s
→ λ= 6,625.10−3410−3.10−2=6,625.10-29 (m)
b) Ta có m=1g=10-3kg và v =100 km/s=105 m
→ λ= 6,625.10−3410−3.105= 6,625.10-36 (m)
c) Ta có mHe=4,003 = 4,003. 1,66.10-24. 10-3=6,645.10-27 kg và v= 1000m/s
→ λ= 6,625.10−344,03.1000=9.97.10-11 (m)
a) áp dụng công thức
\(\lambda=\frac{h}{mv}=\frac{6,625.10^{-34}}{10^{-3}.10^{-2}}=6,625.10^{-29}\left(m\right)\)
b)
\(\lambda=\frac{6,625.10^{-34}}{10^{-3}.100.10^3}=6,625.10^{-36}\left(m\right)\)
c)
\(\lambda=\frac{6,625.10^{-34}}{4,003.1000}=1,65.10^{-37}\left(m\right)\)
Ta có: cos 450 = \(\frac{\text{ λ}}{\text{ λ}'}=\frac{\text{ λ}}{0,22}\)
=> λ = cos450.0,22 = 0.156Ǻ
Thưa thầy, thầy chữa bài này được không ạ. Thầy ra lâu rồi nhưng chưa có đáp án đúng
Xác suất tìm thấy vi hạt tính bằng công thức: P(b,c)= \(\int\limits^c_b\)\(\psi\)2dx
Thay ᴪ = sqrt(2/a).sin(ᴫx/a). Giải tích phân ta đươc:
P(b,c)= \(\frac{c-b}{a}-\frac{1}{2\pi}\left(sin\frac{2\pi c}{a}-sin\frac{2\pi b}{a}\right)\)
a) x = 4,95 ÷ 5,05 nm
P(4.95;5.05)= \(\frac{0,1}{10}-\frac{1}{2\pi}\left(sin\frac{2\pi.5,05}{10}-sin\frac{2\pi.4,95}{10}\right)\)= 0.02
Tương tự với phần b, c ta tính được kết quả:
b) P= 0.0069
c)P=6,6.10-6
Ta có:Xác suất tìm thấy vi hạt là:
P(x1;x2)=\(\int\limits^{x_2}_{x_1}\Psi^2d_x\)=\(\int\limits^{x_2}_{x_1}\frac{2}{a}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(\frac{2}{a}.\int\limits^{x_2}_{x_1}\sin^2\left(\frac{\pi}{a}.x\right)d_x\)=\(-\frac{1}{2}.\frac{2}{a}\int\limits^{x_2}_{x_1}\left(1-2\sin^2\left(\frac{\pi}{a}.x\right)-1\right)d_x\)
=\(-\frac{1}{a}\int\limits^{x_2}_{x_1}\cos\left(\frac{2\pi}{a}.x\right)d_x+\frac{1}{a}\int\limits^{x_2}_{x_1}d_x\)=\(\frac{1}{a}\left(x_2-x_1-\frac{a}{2\pi}\left(\sin\left(\frac{2\pi}{a}.x_2\right)-\sin\left(\frac{2\pi}{a}.x_1\right)\right)\right)\)
a)x=4,95\(\div\)5,05nm
Xác suất tìm thấy vi hạt là:
P\(\left(4,95\div5,05\right)\)=\(\frac{1}{10}\left(5,05-4,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.5,05\right)-\sin\left(\frac{2\pi}{10}.4,95\right)\right)\right)\)=0,019
b)Xác suất tìm thấy vi hạt là:
P(1,95\(\div\)2,05)=\(\frac{1}{10}\left(2,05-1,95-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.2,05\right)-\sin\left(\frac{2\pi}{10}.1,95\right)\right)\right)\)=0,0069
c)Xác suất tìm thấy vi hạt là:
P(9,9\(\div\)10)=\(\frac{1}{10}\left(10-9,9-\frac{10}{2\pi}\left(\sin\left(\frac{2\pi}{10}.10\right)-\sin\left(\frac{2\pi}{10}.9,9\right)\right)\right)\)=6,57\(\times10^{-6}\)
1/
- Cho giấy quỳ tím ẩm vào 5 lọ trên
+ Khí HCl gặp nước tạo thành dung dịch axit HCl \(\rightarrow\) đỏ quỳ tím
+ Quỳ tím bị mất màu là khí Cl2
Cl2 + H2O\(\rightarrow\) HCl + HClO (HClO làm mất màu quỳ tím)
+ 3 khí CO2, H2, O2 không làm đổi màu quỳ tím.
- Dẫn lần lượt 3 khí qua ống nghiệm đụng CuO đun nóng
+ Khí làm CuO đen chuyển sang đỏ Cu là H2
CuO + H2 \(\rightarrow\) Cu + H2O
+ 2 khí còn lại là CO2 và O2
- Dẫn qua nước vôi trong \(\rightarrow\) đục là CO2
CO2 + Ca(OH)2 \(\rightarrow\) CaCO3 + H2O
- Khí còn lại là O2
2/
Nhận biết khí Cl2 có màu vàng lục.
- Lần lượt cho các khí còn lại qua nước vôi trong dư, khí nào làm đục nước vôi trong là CO2
CO2+Ca(OH)2\(\rightarrow\)CaCO3+H2O
- Đốt hai khí còn lại trong điều kiện thiếu oxi, khí nào cho chất rắn màu vàng là khí H2S, khí còn lại không cháy là HCl
\(2H_2S+O_2\rightarrow2S+2H_2O\)
Câu trả lời của bạn Vũ Thị Ngọc Chinh câu a và câu b tớ thấy đúng rồi, ccâu c ý tính năng lượng của photon ứng với vạch giới hạn của dãy paschen tớ tính thế này:
Khi chuyển từ mức năng lượng cao \(E_{n'}\)về mức năng lượng thấp hơn \(E_n\)năng lượng của e giảm đi một lượng đứng bằng năng lượng cảu một photon nên trong trương hợp này đối vs nguyên tử H thì nang lượng photon ứng với vạch giới hạn của dãy paschen là:
\(\Delta E=E_{n'}-E_n=\left(0-\left(-13,6.\frac{1}{n^2}\right)\right)=13,6.\frac{1}{3^2}=1.51\left(eV\right)\)
Không biết đúng không có gì sai góp ý nhé!!
a. pt S ở trạng thái dừng:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E-U)\(\Psi\)=0
đối với Hidro và các ion giống nó, thế năng tương tác hút giữa e và hạt nhân:
U=-\(\frac{Z^2_e}{r}\)
\(\rightarrow\)pt Schrodinger của nguyên tử Hidro và các ion giống nó:
\(\bigtriangledown\)2\(\Psi\)+\(\frac{8m\pi^2}{h^2}\)(E+\(\frac{Z^2_e}{r}\))=0
b.Số sóng : \(\widetilde{\nu}\)=\(\frac{1}{\lambda}\)=\(\frac{1}{4861,3.10^{-10}}\)
ta có : \(\widetilde{\nu}\)=Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\)
\(\rightarrow\)Hằng số Rydberg:
Rh=\(\frac{\widetilde{v}}{\frac{1}{n^2}-\frac{1}{n'^2}}\)=\(\frac{1}{\lambda.\left(\frac{1}{n^2}-\frac{1}{n'^2}\right)}\)
vạch màu lam:n=3 ; n'=4
Rh=\(\frac{1}{4861,3.10^{-10}.\left(\frac{1}{2^2}-\frac{1}{4^2}\right)}\)=10971.103 m-1=109710 cm-1.
c.Dãy Paschen :vạch phổ đầu tiên n=3 ; vạch phổ giới hạn n'=\(\infty\)
Số sóng : \(\widetilde{\nu}\)= Rh.(\(\frac{1}{n^2}\)-\(\frac{1}{n'^2}\))
=109710.(\(\frac{1}{3^2}\)-\(\frac{1}{\infty^2}\))=12190 cm-1.
Năng lượng của photon ứng với vạch giới hạn của dãy Paschen:
En=-13,6.\(\frac{1}{n^2}\)=-13,6.\(\frac{1}{\infty}\)=0.
Câu a:
Có 3 dd là: H2O, NaOH, HCl
Cho quỳ tím vào:
\(\rightarrow\) Hóa đỏ: HCl
\(\rightarrow\) Hóa xanh: NaOH
\(\rightarrow\) Không chuyển màu: H2O
Câu b:
Có 4 dd: H2O, Ca(OH)2 (ở dạng dd), H2SO4 loãng, NaCl.
+ Cho quỳ tím vào:
\(\rightarrow\) Hóa xanh: dd Ca(OH)2
\(\rightarrow\) Hóa đỏ: H2SO4 loãng
\(\rightarrow\) Không chuyển màu quỳ tím: H2O và NaCl -----nhóm A
Với nhóm A:
- Cách 1:
Cho dd AgNO3 vào mỗi chất trong nhóm A:
\(\rightarrow\) Tạo kết tủa với AgNO3: NaCl
NaCl + AgNO3 \(\rightarrow\)AgCl\(\downarrow\) + NaNO3
\(\rightarrow\) Không hiện tượng: H2O
Nếu bạn chưa học tới thì có thể dùng cách 2:
- Cách 2:
Lấy ít mẫu thử của H2O và NaCl đun nóng.
\(\rightarrow\) Bay hơi hết : H2O
\(\rightarrow\) Bay hơi còn lại chất rắn kết tinh : NaCl
a, trích 3 mau thử ra 3 ống nghiệm có mẩu quỳ tím
chất lam cho quỳ tím hóa đỏ là HCl
chất lam quý tím xanh la NaOH
còn lại quỳ tím ko đổi mau la H2O
Ta có :
[A^ ,B^]= A^ . B^ - B^ . A^
vậy
a) Ta có : [A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)ddx(x . ᵠ) - x . (\(\frac{d}{dx}\)ddx.ᵠ)
= ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)
=1.ᵠ
hay [A^ ,B^]=1
b) Tương tự ta có: [A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)ddx(x2 . ᵠ) - x2(\(\frac{d}{dx}\)ddx.ᵠ)
= 2x ᵠ + x2(dᵠ\dx)- x2(dᵠ\dx)
= 2x ᵠ
hay [A^ ,B^]=2x
[A^ ,B^]= A^ . B^ - B^ . A^
a.[A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)(x . ᵠ) - x . (\(\frac{d}{dx}\) ᵠ)
= ᵠ +( xdᵠ\dx) - ( xdᵠ\dx)
=1.ᵠ
[A^ ,B^]=1
b. .[A^ ,B^]. ᵠ =( A^ . B^).ᵠ - (B^ . A^).ᵠ
= A^.( B^).ᵠ - B^ .( A^.ᵠ)
=\(\frac{d}{dx}\)(x2 . ᵠ) - x2(\(\frac{d}{dx}\).ᵠ)
= 2x ᵠ + x2(dᵠ\dx)- x2(dᵠ\dx)
= 2x ᵠ
[A^ ,B^]=2x
Áp dụng CT :
\(C\%=\frac{m_{ct}}{m_{dd}}.100\%=\frac{5,58}{200}.100\%=2,79\%\)
Đáp án C
Quỳ tím hóa đỏ → X là axit → X: axit glutamic.
Cho quỳ vào Y không đổi màu → Y là anilin hoặc alanin.
Cho NaOH vào Y, dung dịch trong suốt → Y là alanin.
Anilin không tan trong kiềm, không làm quỳ chuyển màu → Z: anilin.
Metylamin làm quỳ chuyển xanh, tan trong nước → trong dung dịch NaOH, dung dịch trong suốt → T: metylamin