K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Chọn B

Quỳ tím hóa đỏ → X là axit → X: axit glutamic.

Cho quỳ vào Y không đổi màu → Y là anilin hoặc alanin.

Cho NaOH vào Y, dung dịch trong suốt → Y là alanin.

Anilin không tan trong kiềm, không làm quỳ chuyển màu →Z: anilin.

Metylamin làm quỳ chuyển xanh, tan trong nước → trong dung dịch NaOH, dung dịch trong suốt → T: metylamin.

26 tháng 12 2014

Bài làm đúng. Câu 41 cần làm rõ ràng.

29 tháng 12 2014

Bài này đúng rồi

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

19 tháng 12 2014

e k post đc câu trả lời thầy ơi?

1 tháng 8 2015

Cho em hỏi:

Keo Fe(OH)3   hình thành từ phản ứng sau với lượng dư FeCl3:

FeCl3 + 3NaOH ® Fe(OH)3¯ + 3NaCl

nếu cho các hạt keo sa lắng trong một ống hình tụ có gắn hai điện cực ở hai độ cao khác nhau thì điện cực ở phía trên âm hay dương? tại sao?

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D

20 tháng 12 2017

Đáp án B

31 tháng 8 2019

Đáp án C

Quỳ tím hóa đỏ → X là axit → X: axit glutamic.

Cho quỳ vào Y không đổi màu → Y là anilin hoặc alanin.

Cho NaOH vào Y, dung dịch trong suốt → Y là alanin.

Anilin không tan trong kiềm, không làm quỳ chuyển màu → Z: anilin.

Metylamin làm quỳ chuyển xanh, tan trong nước → trong dung dịch NaOH, dung dịch trong suốt → T: metylamin

20 tháng 11 2015

HD:

FexOy + yCO \(\rightarrow\) xFe + yCO2

Trong một phản ứng hóa học, các chất tham gia và các chất sản phẩm phải chứa cùng số nguyên tố tạo ra chất.

20 tháng 1 2015

a. CM:         [ M^x , M^]  =    ih.M^z  

ta có :

 M^M^y   =    ( - i.h )2.\(\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\)

               =    (  i.h )2.\(\left(y\frac{\partial}{\partial x}-xy\frac{\partial^2}{\partial z^2}\right)\)

M^y.M^x    =    ( - i.h )2.\(\left(z\frac{\partial}{\partial x}-x\frac{\partial}{\partial z}\right)\left(y\frac{\partial}{\partial z}-z\frac{\partial}{\partial y}\right)\)

suy ra :

[ M^x , M^] = M^x M^y  - M^y.M^x  

                 = ( i.h )2.\(\left(y\frac{\partial}{\partial x}-x\frac{\partial}{\partial y}\right)\)

                 = ih.( - i.h)\(\left(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}\right)\)

                 =  ih.M^z               (dpcm)

b.CM:    [S^x, S^y] = 0

 ta có :

S^2 =   S^2x  +  S^2y  +   S^2z

        = ( h4/4) \(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)  + ( h4/4) \(\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\left(\begin{matrix}0&-i\\1&0\end{matrix}\right)\)  +  ( h4/4)\(\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\left(\begin{matrix}1&0\\0&-1\end{matrix}\right)\)

         =   (3h/4).\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)

mặt khác :

S^2.S^x  =   (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)(h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)

            =    (3h3/8)\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
 
S^x.S^2  = (h/2).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\) (3h2/4)\(\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\)
            =(3h3/8).\(\left(\begin{matrix}0&1\\1&0\end{matrix}\right)\)
suy ra : [S^x, S^y] =  S^2.S^x    -  S^x.S^2   0