Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\hept{\begin{cases}-2x-11:3x+2\\3x+2:3x+2\end{cases}}\)\(\implies\)\(\hept{\begin{cases}3.\left(-2x-11\right):3x+2\\2\left(3x+2\right):3x+2\end{cases}}\) \(\implies\) \(\hept{\begin{cases}-6x-33:3x+2\\6x+4:3x+2\end{cases}}\)
\(\implies\) \(-6x-33+6x+4:3x+2\)
\(\implies\) \(-29:3x+2\)
\(\implies\) \(3x+2\) \(\in\) Ư(-29)=\(\{\)\(1;-1;29;-29\) \(\}\)
\(\implies\) \(x\) \(\in\) \(\{\) \(-1;9\)\(\}\)
vì x,y,z \(\in\)Z nên | x | \(\in\)N ; | y | \(\in\)N ; | z | \(\in\)N
Vậy | x | + | y | + | z | \(\ge\)0 ( 1 )
Mà | x | + | y | + | z | = 0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)| x | = | y | = | z | = 0
Do đó : x = y = z = 0
Vì GTTĐ của 1 số luôn lớn hơn hoặc =0.
Mà |x|+|y|+|z|=0.
=>|x|=|y|=|z|=0.
=>x=y=z=0(thỏa mãn).
Vậy ....
Giải:
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
+) \(\frac{x}{4}=2\Rightarrow x=8\)
+) \(\frac{y}{6}=2\Rightarrow y=12\)
+) \(\frac{z}{15}=2\Rightarrow z=30\)
Vậy x = 8
y = 12
z = 30
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x + y + z =50
\(\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{15}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}+\frac{y}{6}+\frac{z}{15}=\frac{50}{25}=2\)
=> x = 2.4 = 8
=> y = 2.6 = 12
=> z = 2.15 = 30
Vậy x = 8;y = 12;z = 30.
Ta có x-y=8; y - z=10=>x - z=8+10=18 =>x=(12+18):2=30:2=15
=>y=15-8=7
=>x+y+z=(x+z)+y=12+7=19
Mình đã kiểm tra và đây là kết quả đúng.