Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow x=3k\)
\(y=5k\)
\(xy=3k.5k=15k^2=135\Rightarrow k=9\Rightarrow k=\sqrt[2]{9}=3\)
Vậy: \(x=3.3=9\)
\(y=3.5=15\)
a, THeo đề bài ta có :
\(\frac{x}{3}=\frac{y}{5}\)\(\Rightarrow\frac{3x}{9}=\frac{2y}{10}\)mà \(3x-2y=10\)
Áp dụng t/c DTSBN, ta đc :
\(\frac{3x}{9}=\frac{2y}{10}\Leftrightarrow\)\(\frac{3x-2y}{9-10}=\frac{10}{-1}=-10\)
\(3x=-10.9=-90\Rightarrow x=-90:3=-30\)
\(2y=-10.10=-100\Rightarrow y=-100:2=-50\)
Vậy \(x=-30\)
\(y=-50\)
b, Gọi x và y là k \(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
Ta có : \(3k.5k=135\)
\(15k^2=135\)
\(k^2=135:15\)
\(k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Leftrightarrow x=\hept{\begin{cases}3.3\\-3.3\end{cases}}\Rightarrow\hept{\begin{cases}x=9\\x=-9\end{cases}}\)
\(y=\hept{\begin{cases}3.5\\-3.5\end{cases}}\Rightarrow\hept{\begin{cases}y=15\\y=-15\end{cases}}\)
Vậy \(x=\pm9\)
\(y=\pm15\)
( don't k ...#EXOComingSoon... )
aTHEO TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{3}=\frac{y}{5}=\frac{3x}{9}=\frac{2y}{10}=\frac{3x-2y}{9-10}=-10\)
\(\Rightarrow x=-30,y=-50\)
b, ĐẶT \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow x=3k,y=5k\)
\(\Rightarrow3k\cdot5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow K^2=9\)
\(\Rightarrow k=3,k=-3\)
hok tốt
#huybip#
đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k
=> x.y=3k .5k=15.k^2=135
=k^2=135:15=9=3^2 hoặc (-3)^2
th1:k=3=> x=9;y=15
th2:k=-3=>x=-9;y=-15
#)Giải :
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)
\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)
\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)
Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)
Bài làm:
Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\)
=> \(\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)
Mà \(yz=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Rightarrow k=\pm3\)
=> \(\hept{\begin{cases}x=\pm21\\y=\pm15\\z=\pm9\end{cases}}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)
Khi đó yz = 135
<=> 5k.3k = 135
=> 15.k2 = 135
=> k2 = 9
=> k = \(\pm\)3
Nếu k = 3 => x = 21 ; y = 15 ; z = 9
Nếu k = -3 => x = -21 ; y = -15 ; z = -9
Vậy các cặp (x;y;z) thỏa mãn bài toán là (21 ; 15 ; 9) ; (-21 ; - 15 ; -9)
Đặt:
\(\dfrac{x}{3}=\dfrac{y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)
\(\Rightarrow xy=3k.5k=135\)
\(\Rightarrow15k^2=135\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3.3=9\\y=3.5=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3.3=-9\\y=-3.5=-15\end{matrix}\right.\end{matrix}\right.\)
Vậy....
Ta có : \(\dfrac{x}{3}=\dfrac{y}{5}\) và xy = 135
\(\Rightarrow\dfrac{x}{3}.y=\dfrac{y}{5}.y\Leftrightarrow\dfrac{xy}{3}=\dfrac{y^2}{5}\)
\(\Rightarrow\dfrac{135}{3}=\dfrac{y^2}{5}\Rightarrow y^2=\dfrac{135}{3}.5=225=\left(\pm15\right)^2\)* Nếu y = 15 \(\Rightarrow\dfrac{x}{3}=\dfrac{15}{5}\Rightarrow x=9\)
* Nếu y = -15 \(\Rightarrow\dfrac{x}{3}=\dfrac{-15}{5}\Rightarrow x=-9\)
Vậy có 2 bộ số (x,y) là (-9,-15);(9,15)
tik mik nha
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{-32}{8}=-4\)
Do đó: x=-12; y=-20
Câu 3:
\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)
Câu b:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)
Câu c:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)
\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)
Câu d:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)
Câu e:
\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)
\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)
3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)
4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)
5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)
6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)
7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)
a: 3x=7y
=>x/7=y/3=(x-y)/(7-3)=-16/4=-4
=>x=-28; y=-12
b: x/6=y/5
=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4
=>x=30/4=15/2; y=25/4
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)
=>x=3/5; y=-9/10; z=3/2
d: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
=>x=16; y=24; z=30
\(\frac{x}{y}=\frac{5}{3}\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)
Thay x = 5k. y = 3k vào xy = 135, ta có:
\(5k.3k=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Leftrightarrow\hept{\begin{cases}k=-3\\k=3\end{cases}}\)
Với \(k=-3\Rightarrow\hept{\begin{cases}x=5k=5.\left(-3\right)=-15\\y=3k=3\left(-3\right)-9\end{cases}}\)
Với \(k=3\Rightarrow\hept{\begin{cases}x=5k=5.3=15\\y=3k=3.3=9\end{cases}}\)
Vậy \(\hept{\begin{cases}x=-15\\y=-9\end{cases}}\)hoặc \(\hept{\begin{cases}x=15\\y=9\end{cases}}\)