K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

\(\frac{x}{y}=\frac{5}{3}\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)

Đặt \(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)

Thay x = 5k. y = 3k vào xy = 135, ta có:

\(5k.3k=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Leftrightarrow\hept{\begin{cases}k=-3\\k=3\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=5k=5.\left(-3\right)=-15\\y=3k=3\left(-3\right)-9\end{cases}}\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=5k=5.3=15\\y=3k=3.3=9\end{cases}}\)

Vậy \(\hept{\begin{cases}x=-15\\y=-9\end{cases}}\)hoặc \(\hept{\begin{cases}x=15\\y=9\end{cases}}\)

19 tháng 8 2016

Đặt: \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow x=3k\)

\(y=5k\)

\(xy=3k.5k=15k^2=135\Rightarrow k=9\Rightarrow k=\sqrt[2]{9}=3\)

Vậy: \(x=3.3=9\)

\(y=3.5=15\)
 

5 tháng 10 2018

a, THeo đề bài ta có :

\(\frac{x}{3}=\frac{y}{5}\)\(\Rightarrow\frac{3x}{9}=\frac{2y}{10}\)mà \(3x-2y=10\)

Áp dụng t/c DTSBN, ta đc :

\(\frac{3x}{9}=\frac{2y}{10}\Leftrightarrow\)\(\frac{3x-2y}{9-10}=\frac{10}{-1}=-10\)

\(3x=-10.9=-90\Rightarrow x=-90:3=-30\)

\(2y=-10.10=-100\Rightarrow y=-100:2=-50\)

Vậy \(x=-30\)

\(y=-50\)

b, Gọi x và y là k \(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

Ta có : \(3k.5k=135\)

\(15k^2=135\)

\(k^2=135:15\)

\(k^2=9\)

\(\Rightarrow k=\pm3\)

\(\Leftrightarrow x=\hept{\begin{cases}3.3\\-3.3\end{cases}}\Rightarrow\hept{\begin{cases}x=9\\x=-9\end{cases}}\)

\(y=\hept{\begin{cases}3.5\\-3.5\end{cases}}\Rightarrow\hept{\begin{cases}y=15\\y=-15\end{cases}}\)

Vậy \(x=\pm9\)

\(y=\pm15\)

( don't k ...#EXOComingSoon... )

5 tháng 10 2018

aTHEO TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU TA CÓ:

\(\frac{x}{3}=\frac{y}{5}=\frac{3x}{9}=\frac{2y}{10}=\frac{3x-2y}{9-10}=-10\)

\(\Rightarrow x=-30,y=-50\)

b, ĐẶT \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow x=3k,y=5k\)

\(\Rightarrow3k\cdot5k=135\)

\(\Rightarrow15k^2=135\)

\(\Rightarrow K^2=9\)

\(\Rightarrow k=3,k=-3\)

hok tốt

#huybip#

đặt x/3=y/5=k(k khác 0) =>x=3k; y=5k

=> x.y=3k .5k=15.k^2=135

=k^2=135:15=9=3^2 hoặc (-3)^2

 th1:k=3=> x=9;y=15

th2:k=-3=>x=-9;y=-15

14 tháng 6 2019

#)Giải :

Đặt \(\frac{x}{3}=\frac{y}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)

\(\Rightarrow xy=3k.5k=135\)

\(\Rightarrow15k^2=135\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

\(\hept{\begin{cases}x=3.3=9\\y=3.5=15\end{cases}}\)

\(\hept{\begin{cases}x=-3.3=-9\\y=-3.5=-15\end{cases}}\)

Vậy x có hai bộ số (x,y) là (9,15) ; (-9,-15)

21 tháng 8 2020

Bài làm:

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\)

=> \(\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Mà \(yz=135\Leftrightarrow15k^2=135\Leftrightarrow k^2=9\Rightarrow k=\pm3\)

=> \(\hept{\begin{cases}x=\pm21\\y=\pm15\\z=\pm9\end{cases}}\)

21 tháng 8 2020

Đặt \(\frac{x}{7}=\frac{y}{5}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=5k\\z=3k\end{cases}}\)

Khi đó yz = 135

<=> 5k.3k = 135

=> 15.k2 = 135

=> k2 = 9

=> k = \(\pm\)3

Nếu k = 3 => x = 21 ; y = 15 ; z = 9

Nếu k = -3 => x = -21 ; y = -15 ; z = -9

Vậy các cặp (x;y;z) thỏa mãn bài toán là (21 ; 15 ; 9) ; (-21 ; - 15 ; -9)

2 tháng 8 2017

Đặt:

\(\dfrac{x}{3}=\dfrac{y}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\)

\(\Rightarrow xy=3k.5k=135\)

\(\Rightarrow15k^2=135\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3.3=9\\y=3.5=15\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3.3=-9\\y=-3.5=-15\end{matrix}\right.\end{matrix}\right.\)

Vậy....

2 tháng 8 2017

Ta có : \(\dfrac{x}{3}=\dfrac{y}{5}\) và xy = 135

\(\Rightarrow\dfrac{x}{3}.y=\dfrac{y}{5}.y\Leftrightarrow\dfrac{xy}{3}=\dfrac{y^2}{5}\)

\(\Rightarrow\dfrac{135}{3}=\dfrac{y^2}{5}\Rightarrow y^2=\dfrac{135}{3}.5=225=\left(\pm15\right)^2\)* Nếu y = 15 \(\Rightarrow\dfrac{x}{3}=\dfrac{15}{5}\Rightarrow x=9\)

* Nếu y = -15 \(\Rightarrow\dfrac{x}{3}=\dfrac{-15}{5}\Rightarrow x=-9\)

Vậy có 2 bộ số (x,y) là (-9,-15);(9,15)

tik mik nha

17 tháng 10 2021

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{-32}{8}=-4\)

Do đó: x=-12; y=-20

25 tháng 10 2021

Câu 3:

\(\dfrac{x}{y}=\dfrac{5}{9}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=5\\ \dfrac{y}{9}=10\Rightarrow y=90\)

Câu b:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\dfrac{x}{2}=7\Rightarrow x=14\\ \dfrac{y}{3}=7\Rightarrow y=21\)

Câu c:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-1}{5+7-10}=\dfrac{20}{2}=10\)

\(\dfrac{x}{5}=10\Rightarrow x=50\\ \dfrac{y}{7}=10\Rightarrow y=70\\ \dfrac{z}{10}=10\Rightarrow z=100\)

Câu d:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\dfrac{x}{3}=11\Rightarrow x=3\\ \dfrac{y}{4}=11\Rightarrow y=44\\ \dfrac{z}{5}=11\Rightarrow z=55\)

Câu e:

\(\dfrac{x}{4}=\dfrac{y}{2}\Rightarrow\dfrac{x}{8}=\dfrac{y}{6}\\\dfrac{y}{3}=\dfrac{z}{5}\Rightarrow\dfrac{y}{6}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10} \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{8+6-10}=\dfrac{20}{4}=5\)

\(\dfrac{x}{8}=5\Rightarrow x=40\\ \dfrac{y}{6}=5\Rightarrow y=30\\ \dfrac{z}{10}=5\Rightarrow z=50\)

 

25 tháng 10 2021

3) \(\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x-y}{5-9}=\dfrac{-40}{-4}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.9=90\end{matrix}\right.\)

4) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{5x}{10}=\dfrac{2y}{6}=\dfrac{5x-2y}{10-6}=\dfrac{28}{4}=7\)

\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=7.3=21\end{matrix}\right.\)

5) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{10}=\dfrac{x+y-z}{5+7-10}=\dfrac{20}{2}=10\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.5=50\\y=10.7=70\\z=10.10=100\end{matrix}\right.\)

6) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2y}{8}=\dfrac{2z}{10}=\dfrac{3x-2y+2z}{9-8+10}=\dfrac{121}{11}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x=11.3=33\\y=11.4=44\\z=11.5=55\end{matrix}\right.\)

7) \(\Rightarrow\dfrac{x}{12}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{x+y-z}{12+6-10}=\dfrac{20}{8}=\dfrac{5}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}.12=30\\y=\dfrac{5}{2}.6=15\\z=\dfrac{5}{2}.10=25\end{matrix}\right.\)

a: 3x=7y

=>x/7=y/3=(x-y)/(7-3)=-16/4=-4

=>x=-28; y=-12

b: x/6=y/5

=>x/6=2y/10=(x+2y)/(6+10)=20/16=5/4

=>x=30/4=15/2; y=25/4

c: Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot2+3\cdot\left(-3\right)+5\cdot5}=\dfrac{6}{20}=\dfrac{3}{10}\)

=>x=3/5; y=-9/10; z=3/2

d: x/2=y/3

=>x/8=y/12

y/4=z/5

=>y/12=z/15

=>x/8=y/12=z/15

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

=>x=16; y=24; z=30