K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

Bạn ơi tìm x nhưng x thuộc j đấy hay tìm x ko thôi

19 tháng 10 2020

2 mũ x nhân 7=224        (3x+5) mũ 2=289                   phần c mình chịu T-T

2 mũ x=224:7                 (3x+5) mũ 2=17 mũ 2

2 mũ x=32                       3x+5=17

2 mũ 5=32                      3x=17-2

=>x=5                               3x=15

                                         x=15:3

                                         x=5

19 tháng 10 2020

a )  2x.7=224

     2x=224:7

     2x=32=25

       vậy x= 5

b)(3X+5)2=289

    (3X+5)2=172

      => 3X+5=17

           3X=17-5

           3X=12

            X=12:3=4

C)32x+1.11=2673

     32x+1=2673:11

    32x+1=243

   32x+1=35

  =>2x+1=5

      2x=5-1

    2x= 4

  x=4:2

x=2

         

19 tháng 12 2019

\(8376:2^2-\left(2^3.5^2-2^3.15\right)+2019^0\)

\(8376:4-\left(2^3.25-2^3.15\right)+1\)

=\(2094-\left(2^3.\left(25-15\right)\right)+1\)

=\(2094-\left(8.10\right)+1\)

=\(2094-80+1\)

\(2014+1\)

=\(2015\)

14 tháng 1

Ta có : 2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8

\Leftrightarrow2^x\left(1+2+2^2+...+2^{2015}\right)=2^{2019}-8 (1)

Đặt : A=1+2+2^2+...+2^{2015}

\Rightarrow2A=2+2^2+2^3+...+2^{2016}

\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)

\Rightarrow A=2^{2016}-1

Khi đó (1) trở thành :

2^x\left(2^{2016}-1\right)=2^{2019}-2^3

\Leftrightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)

\Leftrightarrow2^x=2^3\left(2^{2016}-1\ne0\right)

\Leftrightarrow x=3

Vậy : x=3

15 tháng 1

2�+2�+1+...+2�+2015=22019-8

→2�.1+2�.2+....+2�.22015=22019-8

→2�.(1+2+...+22015)=22019-8

Đặt:

�=1+2+...+22015

2�=2.(1+2+...+22015)

2�=2+22+...+22016

2�-�=(2+22+...+22016)-(1+2+...+22015)

�=2+22+...+22016-1-2-...-22015

�=22016-1

Nên:

2�.(1+2+...+22015)=22019-8

→2�.(22016-1)=22019-8

→2�=(22019-8):(22016-1)

→2�=22019-822016-1

→2�=23.(22016-1)22016-1

→2�=23

→�=3

Vậy 

6 tháng 10 2023

Bài 1:

a) \(4^{x+2}+4^x=68\)

\(\Rightarrow4^x\cdot\left(4^2+1\right)=68\)

\(\Rightarrow4^x\cdot17=68\)

\(\Rightarrow4^x=\dfrac{68}{17}\)

\(\Rightarrow4^x=4\)

\(\Rightarrow4^x=4^1\)

\(\Rightarrow x=1\)

b) \(5\cdot2^{x+4}-3\cdot2^x=308\)

\(\Rightarrow2^x\cdot\left(5\cdot2^4-3\right)=308\)

\(\Rightarrow2^x\cdot\left(5\cdot16-3\right)=308\)

\(\Rightarrow2^x\cdot77=308\)

\(\Rightarrow2^x=\dfrac{308}{77}\)

\(\Rightarrow2^x=4\)

\(\Rightarrow2^x=2^2\)

\(\Rightarrow x=2\)

c) \(4\cdot3^{x+1}+7\cdot3^x=513\)

\(\Rightarrow3^x\cdot\left(4\cdot3+7\right)=513\)

\(\Rightarrow3^x\cdot19=513\)

\(\Rightarrow3^x=\dfrac{513}{19}\)

\(\Rightarrow3^x=27\)

\(\Rightarrow3^x=3^3\)

\(\Rightarrow x=3\)

d) \(5^{x+4}-5^x=3120\)

\(\Rightarrow5^x\cdot\left(5^4-1\right)=3120\)

\(\Rightarrow5^x\cdot\left(625-1\right)=3120\)

\(\Rightarrow5^x\cdot624=3120\)

\(\Rightarrow5^x\cdot\dfrac{3120}{624}\)

\(\Rightarrow5^x=5\)

\(\Rightarrow5^x=5^1\)

\(\Rightarrow x=1\)

f) \(3\cdot4^{2x+1}-16^x=2816\)

\(\Rightarrow3\cdot4^{2x+1}-\left(4^2\right)^x=2816\)

\(\Rightarrow3\cdot4^{2x+1}-4^{2x}=2816\)

\(\Rightarrow4^{2x}\cdot\left(3\cdot4-1\right)=2816\)

\(\Rightarrow4^{2x}\cdot11=2816\)

\(\Rightarrow4^{2x}=\dfrac{2816}{11}\)

\(\Rightarrow4^{2x}=256\)

\(\Rightarrow\left(2^2\right)^{2x}=2^8\)

\(\Rightarrow2^{4x}=2^8\)

\(\Rightarrow4x=8\)

\(\Rightarrow x=2\)

Bài 2:

\(2^x+124=5^y\)

\(\Rightarrow5^y-2^x=124\)

\(\Rightarrow5^y-2^x=125-1\)

\(\Rightarrow\left\{{}\begin{matrix}5^y=125\\2^x=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^y=5^3\\2^x=2^0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=3\\x=0\end{matrix}\right.\)

Vậy: .... 

NM
28 tháng 9 2021

mình làm theo cách lớp 12 nhé 

undefined

12 tháng 10 2021

Bài 1

a) \(x=x^5\)

\(x^5-x=0\)

\(x\left(x^4-1\right)=0\)

\(x=0\) hoặc \(x^4-1=0\)

\(x^4-1=0\)

\(x^4=1\)

\(x=1\)

Vậy x = 0; x = 1

b) \(x^4=x^2\)

\(x^4-x^2=0\)

\(x^2\left(x^2-1\right)=0\)

\(x^2=0\) hoặc \(x^2-1=0\)

*) \(x^2=0\)

\(x=0\)

*) \(x^2-1=0\)

\(x^2=1\)

\(x=1\)

Vậy \(x=0\)\(x=1\)

c) \(\left(x-1\right)^3=x-1\)

\(\left(x-1\right)^3-\left(x-1\right)=0\)

\(\left(x-1\right)\left[\left(x-1\right)^2-1\right]=0\)

\(x-1=0\) hoặc \(\left(x-1\right)^2-1=0\)

*) \(x-1=0\)

\(x=1\)

*) \(\left(x-1\right)^2-1=0\)

\(\left(x-1\right)^2=1\)

\(x-1=1\) hoặc \(x-1=-1\)

**) \(x-1=1\)

\(x=2\)

**) \(x-1=-1\)

\(x=0\)

Vậy \(x=0\)\(x=1\)\(x=2\)