Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x^4 - 12x^2 = 3x^2.(x^2 - 4) = 3x^2.(x - 2)(x + 2)
b) x^2 - 2xy + 3x - 6y
= x(x - 2y) + 3(x - 2y)
= (x - 2y)(x + 3)
a) 3x^4 - 12x^2
= 3x^2.x^2- 3.4x^2
= x^2-4
b) x ^2 - 2xy + 3x - 6y
=(x^2-2xy) +(3x-6y)
=x.(x-2y)+3(x-2y)
=(x-2y).(x+3)
\(a,x^2+7x+7y-y^2\)
\(=x^2-y^2+7\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+7\right)\)
\(b,x^2-2x-9y^2+6y\)
\(=x^2-\left(3y\right)^2-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-2\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-2\right)\)
\(c,x^2-xy+x^3-3x^{2y}+3x^{2y}-y^3\)
\(=x\left(x-y\right)+\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x-y\right)\left(x+x^2+xy+y^2\right)\)
\(\left(x+y+3\right)^2=1-y^2\)
Ta thấy \(1-y^2\le1\) do \(y^2\ge0\forall y\)
Suy ra \( \left(x+y+3\right)^2\le1\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)
\(\Rightarrow2012\le x+y+2016\le2014\)
\(Min_{\left(B\right)}=2012\Leftrightarrow x=-4;y=0\)
\(Max_{\left(B\right)}=2014\Leftrightarrow x=-2;y=0\)
Chúc bạn học tốt !!!
Phân tích các đa thức sau thành nhân tử
a) x^2-3xy+2x-6y
b) x^2+y^2+2xy-4
c)x^2-3x+2
d)2xy+3zy+6y+xz
a/\(\left(x^2-3xy+\frac{9}{4}y^2+2x-\frac{9}{2}y+1\right)+\left(-\frac{9}{4}y^2+\frac{9}{2}y-1\right)=\left(x-\frac{3}{2}y+1\right)^2-\left(\frac{3}{2}y-1\right)^2=\left(x-\frac{3}{2}y+1-\frac{3}{2}y+1\right)\left(x-\frac{3}{2}y+1+\frac{3}{2}-1\right)=\left(x-3y+2\right)x\)b/\(=\left(x-y\right)^2-4=\left(x-y-2\right)\left(x-y+2\right)\)
c/\(=x^2-x-2x+2=x\left(x-1\right)-2\left(x-1\right)=\left(x-2\right)\left(x-1\right)\)
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
1. \(x^2+2y^2+2xy-2y+1=0\)
\(\left(x+y\right)^2+y^2-2y+1=0\)
\(\left(x+y\right)^2+\left(y-1\right)^2=0\)
Có: \(\left(x+y\right)^2\ge0;\left(y-1\right)^2\ge0\)
Mà theo bài ra: \(\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+y=0\\y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(a,3x^2y-6x=3x\left(xy-2\right)\)
\(b,x^2-4=x^2-2^2=\left(x-2\right)\left(x+2\right)\)
\(c,5x^2+5xy-x^2-2xy-y^2\)
\(=5x\left(x+y\right)-\left(x+y\right)\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-x+y\right)\)
\(=\left(x+y\right)\left(4x+y\right)\)
rút gọn (2*x-6)*y+x^2-3*x
phân tích (x-3)*(2*y+x)
\(x^2+2xy-3x-6y=\left(x^2-3x\right)+\left(2xy-6y\right)=x\left(x-3\right)+2y\left(x-3\right)=\left(x-3\right)\left(x+2y\right)\)