Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 -10x - 9y^2 +25 = x^2 -10x -9y^2 + 25 = -(3y-x+5)(3y+x-5)
Chúc bạn học tốt nha
1, \(4x^2-4x+3=\left(2x-1\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 1/2
Vậy GTNN biểu thức trên là 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+25+5\right)=-\left(x-5\right)^2-5\le-5\)
Dấu ''='' xảy ra khi x = 5
Vậy GTLN biểu thức trên là -5 khi x = 5
3, \(x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xayr ra khi x = 1/2
Vậy GTNN biểu thức là 3/4 khi x = 1/2
4, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\)
Dấu ''='' xảy ra khi x = -1/5
Vậy GTNN biểu thức trên là -1 khi x = -1/5
6, \(-x^2+8x+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)\)
\(=-\left(x-4\right)^2+21\le21\)
Dấu ''='' xảy ra khi x = 4
Vậy GTLN biểu thức trên là 21 khi x = 4
Trả lời:
1, \(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi 2x - 1 = 0 <=> x = 1/2
Vậy GTNN của bt = 2 khi x = 1/2
2, \(-x^2+10x-30=-\left(x^2-10x+30\right)=-\left(x^2-10x+25+5\right)=-\left[\left(x-5\right)^2+5\right]\)
\(=-\left(x-5\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi x - 5 = 0 <=> x = 5
Vậy GTLN của bt = - 5 khi x = 5
3, \(25x^2+10x=25x^2+10x+1-1=\left(5x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi 5x + 1 = 0 <=> x = - 1/5
Vậy GTNN của bt = - 1 khi x = - 1/5
4, \(x^2-x+1=x^2-2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy GTNN của bt = 3/4 khi x = 1/2
5, \(8x-x^2+5=-\left(x^2-8x-5\right)=-\left(x^2-8x+16-21\right)=-\left[\left(x-4\right)^2-21\right]\)
\(=-\left(x-4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x - 4 = 0 <=> x = 4
Vậy GTLN của bt = 21 khi x = 4
a)x²−2x−4y²−4ya)x²-2x-4y²-4y
=x²−2x−4y²−4y+2xy−2xy=x²-2x-4y²-4y+2xy-2xy
=(x²−2xy−2x)+(2xy−4y²−4y)=(x²-2xy-2x)+(2xy-4y²-4y)
=x(x−2y−2)+2y(x−2y−2)=x(x-2y-2)+2y(x-2y-2)
=(x+2y)(x−2y−2)=(x+2y)(x-2y-2)
b)x4+2x³−4x−4b)x4+2x³-4x-4
=x4+2x³+2x²−2x²−4x−4=x4+2x³+2x²-2x²-4x-4
=(x4+2x³+2x²)−(2x²+4x+4)=(x4+2x³+2x²)-(2x²+4x+4)
=x²(x²+2x+2)−2(x²+2x+2)=x²(x²+2x+2)-2(x²+2x+2)
=(x²−2)(x²+2x+2)=(x²-2)(x²+2x+2)
c)x³+2x²y−x−2yc)x³+2x²y-x-2y
=x²(x+2y)−(x+2y)=x²(x+2y)-(x+2y)
=(x²−1)(x+2y)=(x²-1)(x+2y)
=(x+1)(x−1)(x+2y)=(x+1)(x-1)(x+2y)
d)3x²−3y²−2(x−y)²d)3x²-3y²-2(x-y)²
=3(x²−y²)−2(x−y)²=3(x²-y²)-2(x-y)²
=3(x+y)(x−y)−2(x−y)²=3(x+y)(x-y)-2(x-y)²
=(x−y)[3(x+y)−2(x−y)]=(x-y)[3(x+y)-2(x-y)]
=(x−y)(3x+3y−2x+2y)=(x-y)(3x+3y-2x+2y)
=(x−y)(x+5y)=(x-y)(x+5y)
e)x³−4x²−9x+36e)x³-4x²-9x+36
=(x³−4x²)−(9x−36)=(x³-4x²)-(9x-36)
=x²(x−4)−9(x−4)=x²(x-4)-9(x-4)
=(x−4)(x²−9)=(x-4)(x²-9)
=(x−4)(x²−3²)=(x-4)(x²-3²)
=(x−4)(x+3)(x−3)=(x-4)(x+3)(x-3)
f)x²−y²−2x−2yf)x²-y²-2x-2y
=(x²−y²)−(2x+2y)=(x²-y²)-(2x+2y)
=(x+y)(x−y)−2(x+y)=(x+y)(x-y)-2(x+y)
=(x+y)(x−y−2)
hok tốt nhé
k đi
a, \(x^3+3x^2-\left(x+3\right)=0\Leftrightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\Leftrightarrow x=1;x=-1;x=-3\)
b, \(15x-5+6x^2-2x=0\Leftrightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(3x-1\right)=0\Leftrightarrow x=-\frac{5}{2};x=\frac{1}{3}\)
c, \(5x-2-25x^2+10x=0\)
\(\Leftrightarrow\left(5x-2\right)-5x\left(5x-2\right)=0\Leftrightarrow\left(1-5x\right)\left(5x-2\right)=0\Leftrightarrow x=\frac{2}{5};x=\frac{1}{5}\)
1, \(3x\left(x-7\right)+2x-14=0\)
\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)
\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)
2, \(x^3+3x^2-\left(x+3\right)=0\)
\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)
3, \(15x-5+6x^2-2x=0\)
\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)
\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)
\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)
4, \(5x-2-25x^2+10x=0\)
\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)
\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)
\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)
\(\Leftrightarrow\left(x-5\right)^2=0\\ \Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
a) B = x - x2 + 2
= \(-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-2\right)=-\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\)
=> Max B = 9/4
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Max B = 9/4 <=> x = 1/2
d) Ta có P = \(x-x^2-1=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}+1\right)=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}\)
=> Max P = -3/4
Dấu "=" xảy ra <=> x -1/2 = 0 <=> x = 1/2
Vậy Max P = -3/4 <=> x = 1/2
Min, Max hả ?
A = x2 - 10x - 3
= ( x2 - 10x + 25 ) - 28
= ( x - 5 )2 - 28 ≥ -28 ∀ x
Đẳng thức xảy ra <=> x - 5 = 0 => x = 5
=> MinA = -28 <=> x = 5
B = -3x2 + 6x - 1
= -3( x2 - 2x + 1 ) + 2
= -3( x - 1 )2 + 2 ≤ 2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxB = 2 <=> x = 1
C = -x2 + 4x
= -( x2 - 4x + 4 ) + 4
= -( x - 2 )2 + 4 ≤ 4 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MaxC = 4 <=> x = 2
D = 2x2 - 8x - 1
= 2( x2 - 4x + 4 ) - 9
= 2( x - 2 )2 - 9 ≥ -9 ∀ x
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinD = -9 <=> x = 2
mọi người ơi giúp mình trả lồi câu hỏi này vớiiiiiiiiiiii
x^2-10x=-25
x.x-10x=-25
x.(x-10)=-25
=>x=-25 hoặc x-10=-25
x =-35
Vậy x thuộc {-25;-35}