Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x là số lớn nhất và 70⋮x; 84⋮x; 120⋮x
⇒x=ƯCLN(70,84,120)
Theo bài ra, ta có:
70=2.5.7
84=2.2.3.7=22.3.7
120=2.2.2.3.5=23.3.5
Thừa số nguyên tố chung:2
⇒ƯCLN(70,84,120)=2
⇒x=2
Vậy x=2
70 ⋮ x, 84 ⋮ x và 120 ⋮ x
⇒ x ∈ ƯC(70; 84; 120)
Mà x là số lớn nhất ⇒ x = ƯCLN(70; 84; 120)
Ta có:
\(70=2\cdot5\cdot7\)
\(84=2^2\cdot3\cdot7\)
\(120=2^3\cdot3\cdot5\)
\(\text{⇒}\) ƯLCN(70; 84; 120) \(=2\)
Vậy: x = 2
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Ta tìm được BCNN (20; 35) = 140. Từ đó ta có:
BC (20;35) = {0; 140; 280; 420; 560;...}. Mà x < 500.
Vậy x ϵ{0; 140; 280; 420}
Bài giải :
Vì x, y là các số tự nhiên lớn hơn 1 nên giả sử 1 < x ≤ y.
+) Ta có x + 1 ⋮ y => x + 1 = ky (k ∈ N*)
=> ky = x + 1 ≤ y + 1 < y + y = 2y
=> ky < 2y
=> k < 2, mà k ∈ N* nên suy ra: k = 1 là thỏa mãn.
=> x + 1 = y
+) Ta có: y + 1 ⋮ x
=> x + 1 + 1 ⋮ x
=> x + 2 ⋮ x, mà x ⋮ x nên: 2 ⋮ x
=> x ∈ {1; 2}
TH1: Với x = 1 => y = 1 + 1 = 2 (Thỏa mãn)
TH2: Với x = 2 => y = 1 + 2 = 3 (Thỏa mãn).
Đ/s: (x, y) ∈ {(1, 2); (2, 3); (2, 1); (3, 2)}.
54\(⋮\) \(x\); 72 ⋮ \(x\); 90 ⋮ \(x\) ⇒ \(x\) \(\in\) ƯC(54; 72; 90) ⇒ \(x\)\(\in\)ƯCLN(54;72;90)
54 = 2.32; 72 = 23.32; 90 = 2.32.5
ƯCLN(54; 72; 90) = 2.32 = 18
\(x\in\)Ư(18) = { 1; 2; 3; 6; 9; 18}
Ta có 900 chia hết cho x
420 chia hết cho x
240 chia hết cho x
và x là STN lớn nhất
Suy ra x = ƯCLN(900;240;420)
Phân tích ra thừa số nguyên tố; ta có kết quả sau :
900 = 22.32.52
420 = 22.3.5.7
240 = 24.3.5
Suy ra ƯCLN(900;420;240) = 22.3.5 = 60
Vậy x = 60