Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)
= \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
= \(\frac{1}{1}-\frac{1}{12}\)
= \(\frac{11}{12}\)
Ta có : \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+......+\frac{1}{132}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{11.12}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{11}-\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/90 + 1/110 = 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + ... + 1/9.10 + 1/10.11 = 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/9 - 1/10 + 1/10 - 1/11 = 1/2 - 1/11 = 9/22
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)
=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}+\frac{1}{10.11}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
=\(\frac{1}{2}-\frac{1}{11}\)
=\(\frac{9}{22}\)
\(\frac{23}{12}\)
\(\frac{314}{105}\)
\(\frac{59}{60}\)
\(\frac{199}{90}\)
\(\frac{1}{18}\)
\(\frac{13}{36}\)
\(\frac{4}{221}\)
\(\frac{4}{85}\)
\(\left(\times-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\cdot\cdot\cdot+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow\left(\times-\frac{1}{5}\right)=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow\times-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow\times=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow\times=\frac{21}{55}\)
\(\left(x-\frac{1}{5}\right):\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\left(1-\frac{1}{11}\right)=\frac{1}{5}\)
\(\Rightarrow\left(x-\frac{1}{5}\right):\frac{10}{11}=\frac{1}{5}\)
\(\Rightarrow x-\frac{1}{5}=\frac{1}{5}\times\frac{10}{11}\)
\(\Rightarrow x-\frac{1}{5}=\frac{2}{11}\)
\(\Rightarrow x=\frac{2}{11}+\frac{1}{5}\)
\(\Rightarrow x=\frac{21}{55}\)
Vậy \(x=\frac{21}{55}\)