Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{3.5}+\dfrac{8}{5.9}+\dfrac{12}{9.15}+...+\dfrac{32}{x\left(x+16\right)}=\dfrac{16}{15}\)
\(2.\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+\dfrac{6}{9.15}+..+\dfrac{16}{X.\left(X+16\right)}\right)=\dfrac{16}{15}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{15}+...+\dfrac{1}{X}-\dfrac{1}{X+16}=\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{1}{3}-\dfrac{8}{15}\)
\(\dfrac{1}{X+16}=\dfrac{-1}{5}\)
\(X+16=-5\)
\(X=-21\)
\(\dfrac{\left(17\dfrac{8}{19}-16\dfrac{9}{18}\right).\left(17,5+16\dfrac{17}{51}-32\dfrac{15}{22}\right)}{\dfrac{7}{3.13}+\dfrac{7}{13.23}+\dfrac{7}{23.33}}\)
=\(\dfrac{\dfrac{35}{38}.\dfrac{38}{33}}{\dfrac{7}{10}\left(\dfrac{1}{3}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\left(\dfrac{1}{3}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\dfrac{10}{33}}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{33}}\)
=\(\dfrac{35}{33}:\dfrac{7}{33}\)
=\(\dfrac{35}{33}.\dfrac{33}{7}\)
=5
a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)
\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)
\(24n+384=25n+325\)
\(25n-24n=384-325\)
\(n=59\)
Giải:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(\Leftrightarrow A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}+\dfrac{1}{2^7}\)
Lấy vế trừ vế, ta được:
\(A-\dfrac{1}{2}A=\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)
\(\Leftrightarrow\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^7}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}-\dfrac{1}{2^7}}{\dfrac{1}{2}}\)
\(\Leftrightarrow A=\dfrac{\dfrac{1}{2}\left(1-\dfrac{1}{2^6}\right)}{\dfrac{1}{2}}\)
\(\Leftrightarrow A=1-\dfrac{1}{2^6}\)
Vậy \(A=1-\dfrac{1}{2^6}\).
Chúc bạn học tốt!!!
Đặt:
\(A=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\)
\(2A=2\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)
\(2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
\(2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+\dfrac{1}{2^6}\right)\)
\(A=1-\dfrac{1}{2^6}=1-\dfrac{1}{64}=\dfrac{63}{64}\)
\(B=\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
=>\(B=\dfrac{32}{64}+\dfrac{16}{64}+\dfrac{6}{64}+\dfrac{2}{64}+\dfrac{1}{64}\)
=>\(B=\dfrac{32+16+6+2+1}{64}\)
=>\(B=\dfrac{63}{64}\)
\(N=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(N=\dfrac{1}{2^1}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+\dfrac{1}{2^5}-\dfrac{1}{2^6}\)
\(2N=1-\dfrac{1}{2^1}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-\dfrac{1}{2^5}\)
\(2N+N=1-\dfrac{1}{2^6}\)
\(N=\dfrac{1}{3}-\dfrac{1}{2^6.3}< \dfrac{1}{3}\left(đpcm\right)\)
3)\(\dfrac{-41}{32}\left(\dfrac{15}{8}-\dfrac{16}{41}\right)+\dfrac{15}{8}\left(\dfrac{41}{32}-\dfrac{8}{3}\right)\)
=\(\dfrac{-41}{32}.\dfrac{15}{8}-\dfrac{-41}{32}.\dfrac{16}{41}+\dfrac{15}{8}.\dfrac{41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(\left(\dfrac{-41}{32}.\dfrac{15}{8}+\dfrac{15}{8}.\dfrac{41}{32}\right)+\dfrac{-16}{41}.\dfrac{-41}{32}-\dfrac{15}{8}.\dfrac{8}{3}\)
=\(0+\dfrac{1}{2}-5=\dfrac{-9}{2}\)
4)\(\dfrac{13}{29}\left(\dfrac{29}{5}-\dfrac{45}{8}\right)-\dfrac{45}{8}\left(\dfrac{9}{8}-\dfrac{13}{29}\right)\)
=\(\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{9}{8}-\dfrac{45}{8}.\dfrac{13}{29}\)
=\(\left(\dfrac{45}{8}.\dfrac{13}{29}-\dfrac{45}{8}.\dfrac{13}{29}\right)-\dfrac{13}{29}.\dfrac{29}{5}-\dfrac{45}{8}.\dfrac{9}{8}\)
=\(0-\dfrac{13}{5}-\dfrac{405}{64}=\dfrac{-2857}{320}\)
a) \(\dfrac{1}{2}\)=\(\dfrac{6}{12}\) b) \(\dfrac{-7}{8}\)=\(\dfrac{-28}{32}\) c)\(\dfrac{3}{4}\)=\(\dfrac{15}{20}\) d) \(\dfrac{-4}{9}\)=\(\dfrac{-16}{36}\)
e) \(\dfrac{3}{4}\)=\(\dfrac{15}{20}\)
HỌC TỐT
Sửa đề:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< 1\)
Ta có:
\(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}=\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{64}\)
\(< \dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}< \dfrac{4}{4}< 1\)
\(x\cdot\dfrac{8}{16}=\dfrac{32}{16}\)
\(\Leftrightarrow x=\dfrac{32}{16}:\dfrac{8}{16}\)
\(\Leftrightarrow x=\dfrac{32}{16}\cdot\dfrac{16}{8}\)
\(\Leftrightarrow x=4\)
X=32/16:8/16
=>x=4