Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(y=a-x\) vào biểu thức \(P\).Vì \(x+y=a\); \(x,y\ge0\); \(0\le x,y\le a\)
Ta có : \(P=40x+x\left(a-x\right)=-x^2+\left(40+a\right)x\)
Nếu \(a\ge40\):
\(P=-\left[x^2+\left(40+a\right)x\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left[x^2-2x\cdot\frac{40+a}{2}+\left(\frac{40+a}{2}\right)^2\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left(x-\frac{40+a}{2}\right)^2\)
Dễ thấy \(\left(x-\frac{40+a}{2}\right)^2\ge0\)với mọi \(0\le x\le a\)
\(\Leftrightarrow P\le\left(\frac{40+a}{2}\right)^2\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{40+a}{2}\\b=\frac{a-40}{2}\end{cases}}\)
Nếu \(a< 40\)
\(P=-x^2+\left(40+a\right)x\)
\(P=40x-ax+a^2-\left(x-a\right)^2a\)
\(P=x\left(40-a\right)+a^2-\left(x-a\right)^2\)
Vì \(a< 40\); \(x\le a\)
\(\Rightarrow x\left(40-a\right)\le a\left(40-a\right)\)
\(\left(x-a\right)^2\ge0\)với mọi \(0\le x\le a\)
Do đó : \(P\le a\left(40-a\right)+a^2=40a\)
Dấu " = " xảy ra : \(\hept{\begin{cases}x=a\\y=0\end{cases}}\)
Vậy ....
Nguồn : h.o.c.24
Thương của 1 số có 3 chữ số chia cho 11 là số có 2 chữ số
Khi số có 3 chữ số là lớn nhất thì thương cũng là lớn nhất.
Mà thương có tổng các chữ số là 5 nên số lớn nhất thỏa là 50
Vậy số cần tìm là: 50.11 = 550
1.nhan xet
voi a thuoc Z
\(\left[\sqrt{a^2}\right]=\left[\sqrt{a^2+1}\right]=...=\left[\sqrt{a^2+2a}\right]\)
do do\(\left[\sqrt{a^2}\right]+\left[\sqrt{a^2+1}\right]+...+\left[\sqrt{a^2+2a}\right]=\frac{2a\left(2a+1\right)}{2}=a\left(2a+1\right)\)
thay a=1 cho den 10
tu tinh ra 825
Gọi số cần tìm là \(\overline{ab}\)
Theo đề, ta có: a+b=11 và 10b+a-10a-b=27
=>a+b=11 và -9a+9b=27
=>a+b=11 và a-b=-3
=>a=4 và b=7
x=900
Số nguyên âm lớn nhất có 2 chữ số : -10.
Theo đề ra, ta có ;
x - 910 = -10
x = (-10) + 910
x = 900.
Vậy x = 900.
#Riin