Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=-\dfrac{3}{5}\) vào biểu thức ta có:
\(\dfrac{1}{2}+\dfrac{1}{3}.\dfrac{-3}{5}-\dfrac{1}{6}.\dfrac{-3}{5}\)
\(=\dfrac{1}{2}+\dfrac{-3}{5}.\left(\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{1}{2}+\dfrac{-3}{5}.\dfrac{1}{6}\)
\(=\dfrac{1}{2}+\dfrac{-1}{10}=\dfrac{2}{5}\)
Chúc bạn học tốt!!!
đóng góp một cách khác:
đặt biểu thức trên là A.
\(A=\dfrac{1}{2}+\dfrac{1}{3}x-\dfrac{1}{6}x=\dfrac{1}{2}+\dfrac{x}{6}\)
Thay \(x=-\dfrac{3}{5}\) vào biểu thức A, ta có:
\(A=\dfrac{1}{2}+\dfrac{-\dfrac{3}{5}}{6}\\ =\dfrac{1}{2}-\dfrac{1}{10}\\ =\dfrac{5}{10}-\dfrac{1}{10}\\ =\dfrac{4}{10}\\ =\dfrac{2}{5}\)
Vậy giá trị biểu thức A tại \(x=-\dfrac{3}{5}\) là \(\dfrac{2}{5}\)
a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)
\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)
Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)
Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)
b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)
\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)
Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)
B = ( x - 3 )2 + 2
Ta có: ( x - 3 )2 \(\ge0\) với mọi x
=> \(\left(x-3\right)^2+2\ge0+2=2\)với mọi x
=> \(B\ge2\) với mọi x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy gtnn của B = 2 đạt tại x = 3
C = |2 x - 18 | + |y + 3 | + 2
Có: | 2x -18| \(\ge0\); | y + 3 | \(\ge0\)=>| 2x - 18| + | y+3| \(\ge0\)
=> | 2x -18| + | y+3| + 2 \(\ge2\)
Dấu "=" xảy ra <=> 2x -18 = 0 và y + 3 = 0 <=> x = 9 và y = - 3
Vậy gtnn của B = 2 đạt tại x = 9 và y = -3.
B=(x−3)2+2 \(\ge\)2\(\forall\)x
Dấu "=" xảy ra khi x−3=0⇒x=3
Vậy GTNN của B=2 khi x=3
C=|2x−18|+|y+3|+2 \(\ge\) 2\(\forall\)x,y
Dấu "=" xảy ra khi\(\hept{\begin{cases}2x-18=0\\x+3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=9\\y=-3\end{cases}}\)
Vậy GTNN của C=2khi\(\hept{\begin{cases}x=9\\x=-3\end{cases}}\)
#Châu's ngốc
a) Vì \(\left|2x+8\right|\ge0\forall x\)
\(\Rightarrow\left|2x+8\right|-3\ge-3\forall x\)
\(\Rightarrow A_{min}=-3\)
Dấu "=" xảy ra khi: \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\left(TM\right)\)
Vậy \(A_{min}=-3\)\(\Leftrightarrow\)\(x=-4\)
\(A=\left|x+9\right|+\left|6-x\right|+450\)
\(\left|x+9\right|\ge-x-9\)
\(\left|6-x\right|\ge x-6\)
\(\Rightarrow A\ge-x-9+x-6+45\)
\(\Rightarrow A\ge30\)
xét A = 30 khi
\(\hept{\begin{cases}x+9< 0\\6-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -9\\x>6\end{cases}\Rightarrow}voli}\)