Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)
\(ĐKXĐ:x\ge2\)
\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)
\(\frac{11}{5}\sqrt{x-2}=11\)
\(\sqrt{x-2}=5\)
\(x-2=25\)
\(x=27\left(TM\right)\)
\(b,\sqrt{x^2-2x+1}=3x-2\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{\left(x-1\right)^2}=3x-2\)
\(\left|x-1\right|=3x-2\)
\(x-1=3x-2\)
\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm
b, đk : x >= 2/3
|x - 1| = 3x - 2
=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x
=> 2x = 1 hoặc 4x = 3
=> x = 1/2 (ktm) hoặc x = 3/4 (tm)
Bài này có trong đề Violympic toán 9 vòng 7 năm học 2017 2018
Đề bài này bị sai, trong căn thứ nhất không có x2 mà x thôi. Mình đã sửa đề và dùng shift solve ( hoặc biến đổi) được kết quả đúng là 2
\(\sqrt{x+3+2\sqrt{3x}}-\sqrt{x+3-2\sqrt{3x}}=2\sqrt{2}\)
<=> \(\sqrt{\left(\sqrt{x}\right)^2+2\sqrt{3}\sqrt{x}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{x}\right)^2-2\sqrt{3}\sqrt{x}+\left(\sqrt{3}\right)^2}=2\sqrt{2}\)
<=>\(\sqrt{\left(\sqrt{x}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{x}-\sqrt{3}\right)^2}=2\sqrt{2}\)
<=>\(\left(\sqrt{x}+\sqrt{3}\right)+\left(\sqrt{x}-\sqrt{3}\right)=2\sqrt{2}\)
<=>\(2\sqrt{x}=2\sqrt{2}\)
<=>\(\sqrt{x}=\sqrt{2}\)
<=>\(x=2\)
Câu hỏi của Nguyễn Cảnh Kyf - Toán lớp 9 - Học toán với OnlineMath
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
a: \(P=\dfrac{\left[\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-4+2\left(\sqrt{x}+1\right)\right]}{x+4\sqrt{x}+4}\)
\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-4+2\sqrt{x}+2}{\left(\sqrt{x}+2\right)^2}\)
\(=\dfrac{x+\sqrt{x}-2}{\left(\sqrt{x}+2\right)^2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)
c: Để |P|>P thì P<0
\(\Leftrightarrow\sqrt{x}-1< 0\)
hay 0<x<1
\(x-9\sqrt{x}+14=0\Leftrightarrow x-2\sqrt{x}-7\sqrt{x}+14=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-7\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=49\end{cases}}}\)
Vậy x = 4 hoặc x = 49
\(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)(1)
Nếu \(x-5\ge0\Rightarrow x\ge5\) thì (1) trở thành: x-5=7-2x <=> 3x=12 <=> x=4 (loại)
Nếu x - 5 < 0 => x < 5 thì (1) trở thành: -(x-5)=7-2x <=> -x+5=7-2x <=> x=2 (nhận)
Vậy x = 2
\(\sqrt{x-2}+\sqrt{2-x}=0\)
\(\Leftrightarrow\left(\sqrt{x-2}+\sqrt{2-x}\right)^2=0\)
\(\Leftrightarrow x-2+2\sqrt{\left(x-2\right)\left(2-x\right)}+2-x=0\)
\(\Leftrightarrow2\sqrt{4x-x^2-4}=0\)
\(\Leftrightarrow\left(\sqrt{4x-x^2-4}\right)^2=0\)
\(\Leftrightarrow4x-x^2-4=0\)
giải phương trình bình thường
\(\sqrt{x^2+x+1}=x+2\)
\(\Leftrightarrow\left(\sqrt{x^2}+x+1\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow x^2+x+1=x^2+4x+4\)
\(\Leftrightarrow-3x=3\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
Bạn tự thu gọn thành 1+\(\frac{1}{\sqrt{x}+2}\) <= 1+\(\frac{1}{2}\)=\(\frac{3}{2}\) <=> x = 0
Tìm GTLN của \(A=\frac{-7x^2+6x+3}{x^2+2}\)
đkxđ \(x-2\ge0\Leftrightarrow x\ge2\)
phương trình đã cho \(\Leftrightarrow\left[\left(x-8\right)\sqrt{x-2}\right]^2=4\)\(\Leftrightarrow\left(x^2-16x+64\right)\left(x-2\right)=4\)
\(\Leftrightarrow x^3-2x^2-16x^2+32x+64x-128=4\)
\(\Leftrightarrow x^3-18x^2+96x-132=0\)
Tới đây bạn bấm máy Casio giải được rồi.