K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2016

TH1: \(\begin{cases}x-7>0\\x-5< 0\end{cases}\)

=> x>7 và x<5 ( vô lí) loại

TH2: \(\begin{cases}x-7< 0\\x-5>0\end{cases}\)

=> x<7 và x>5

vậy x thuộc (5,7)

18 tháng 6 2016

Dễ thấy x - 7 > x - 5

Để \(\frac{x-7}{x-5}< 0\) => x - 7 < 0 và x - 5 > 0

<=> x < 7 và x > 5

Vậy số x cần tìm thỏa mãn 5 < x < 7

28 tháng 9 2018

a)\(\left(x+1\right)\left(x-5\right)< 0\) khi \(\left(x+1\right)\) và \(\left(x-5\right)\) trái dấu.

Chú ý rằng: \(x+1>x-5\) nên \(x+1>0,x-5< 0\). Giải cả hai trường hợp ta có:

\(\hept{\begin{cases}x+1>0\\x-5< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-1\\x< 5\end{cases}}\Leftrightarrow-1< x< 5}\)

b) \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\) khi \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) đồng dấu (\(x-2\ne0,\left(x+\frac{5}{7}\right)\ne0\Leftrightarrow x\ne2;x\ne-\frac{5}{7}\)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) dương thì ta có:\(x-2< x+\frac{5}{7}\). Có 2 TH

 \(\hept{\begin{cases}x-2>0\\x+\frac{5}{7}>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x>-\frac{5}{7}\end{cases}}}\) . Dễ thấy để thỏa mãn cả hai trường hợp thì x > 2  (1)

+ Với \(\left(x-2\right)\) và \(\left(x+\frac{5}{7}\right)\) âm thì ta có: \(x-2< x+\frac{5}{7}\). Có 2 TH

\(\hept{\begin{cases}\left(x-2\right)< 0\\\left(x+\frac{5}{7}\right)< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -\frac{5}{7}\end{cases}}}\). Dễ thấy để x thỏa mãn cả hai trường hợp thì \(x< -\frac{5}{7}\) (2)

Từ (1) và (2) ta có: \(\hept{\begin{cases}x>2\\x< -\frac{5}{7}\end{cases}}\) thì \(\left(x-2\right)\left(x+\frac{5}{7}\right)>0\)

31 tháng 8

Giải:

\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)

\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0

\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)

Vậy \(x\in\) {0; 25}



31 tháng 8

\(x^5\) = 2\(x^7\)

\(x^5\) - 2\(x^7\) = 0

\(x^5\).(1 - 2\(x^2\)) = 0

\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)

Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}



31 tháng 8

Giải:

\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)

\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0

\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)

Vậy \(x\in\) {0; 25}




31 tháng 8

\(x^5\) = 2\(x^7\)

\(x^5\) - 2\(x^7\) = 0

\(x^5\).(1 - 2\(x^2\)) = 0

\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)

\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)

Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}


18 tháng 5 2015

a) Có 2 trường hợp:

+) TH1: \(\frac{1}{3}-x<0\) và \(\frac{2}{5}-x>0\)

=> \(\frac{1}{3}\) < x và \(\frac{2}{5}\) > x <=>  \(\frac{1}{3}\) < x  < \(\frac{2}{5}\)

+) TH2: \(\frac{1}{3}-x>0\) và \(\frac{2}{5}-x<0\)

=> \(\frac{1}{3}\)> x và \(\frac{2}{5}\) < x . Điều này không xảy ra

Vậy  \(\frac{1}{3}\) < x  < \(\frac{2}{5}\)

 

1 tháng 8 2019

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

Vậy \(x\in\left\{\pm7\right\}\)

1 tháng 8 2019

\(\left|x\right|=0\)

\(\Rightarrow x=0\)

Vậy x = 0