Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:\(x\ne\pm2\)
\(\dfrac{6}{x-2}+\dfrac{5}{x+2}=\dfrac{x-18}{x^2-4}\\ \Leftrightarrow\dfrac{6\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x-18}{\left(x+2\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{6x+12+5x-10-x+18}{\left(x+2\right)\left(x-2\right)}=0\\ \Rightarrow10x+20=0\\ \Leftrightarrow x=-2\left(ktm\right)\)
a: =>4x-3x=1-2
=>x=-1
b: =>3x=12
=>x=4
c: =>2(x^2-6)=x(x+3)
=>2x^2-12-x^2-3x=0
=>x^2-3x-12=0
=>\(x=\dfrac{3\pm\sqrt{57}}{2}\)
x2 + 8x + 7 = x2 + x + 7x + 7 = x(x + 1) + 7(x + 1)= (x + 7)(x + 1)
x2 - 5x + 6 = x2 - 2x - 3x + 6 = x(x - 2) - 3(x - 2) = (x - 3)(x - 2)
x2 + 3x - 18 = x2 + 6x - 3x - 18 = x(x + 6) - 3(x + 6) = ((x - 3)(x + 6)
\(a,x^2+8x+7=x^2+7x+x+7=x\left(x+7\right)+\left(x+7\right)=\left(x+7\right)\left(x+1\right).\)
\(b,x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
\(c,x^2+3x-18=x^2+6x-3x-18=x\left(x+6\right)-3\left(x+6\right)=\left(x+6\right)\left(x-3\right)\)
\(d,3x^2-16x+18=3x^2-4x-12x+18\)
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{-18}{9-x^2}\)
\(\Leftrightarrow\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(ĐKXĐ:\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)
\(\dfrac{x}{x+3}+\dfrac{6}{x-3}=\dfrac{18}{x^2-9}\)
\(\Leftrightarrow\dfrac{x.\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{6.\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)
\(\Rightarrow x^2-3x+6x+18=18\)
\(\Leftrightarrow x^2-3x+6x=18-18\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow x=0hoặcx+3=0\)
\(\Leftrightarrow x=0\left(tm\right)hoặcx=-3\left(ktm\right)\)
Vậy phương trình có nghiệm là \(x=0\)
1: \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)
\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)
=>23x+61=2x+61
hay x=0
2: \(\dfrac{6}{x-5}+\dfrac{x+2}{x-8}=\dfrac{18}{\left(x-5\right)\left(8-x\right)}-1\)
\(\Leftrightarrow6x-48+x^2-3x-10=-18-x^2+13x-40\)
\(\Leftrightarrow x^2+3x-58+x^2-13x+58=0\)
\(\Leftrightarrow2x^2-10x=0\)
=>2x(x-5)=0
=>x=0
c: \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)
\(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)
\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)
\(\Leftrightarrow x^2=0\)
hay x=0