Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\pm5\end{matrix}\right.\)
\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25-x^2-25x=0\)
\(\Leftrightarrow5x=-25\)
\(\Leftrightarrow x=-5\left(ktmđk\right)\)
Vậy pt vô nghiệm
Lời giải:
a) $2x-1=x-3x^2$
$\Leftrightarrow 3x^2+x-1=0$
$\Leftrightarrow 36x^2+12x-12=0$
$\Leftrightarrow (6x+1)^2=13$
$\Rightarrow 6x+1=\pm \sqrt{13}$
$\Rightarrow x=\frac{1\pm \sqrt{13}}{6}$
b) Bạn xem lại xem có nhầm dấu không?
Mấy bài dài dài kia tí mình làm cho :)
( x - 1 )3 - x( x - 2 )2 + 1
= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1
= x3 - 3x2 + 3x - x3 + 4x2 - 4x
= x2 - x = x( x - 1 )
2x( 3x + 2 ) - 3x( 2x + 3 )
= 6x2 + 4x - 6x2 - 9x
= -5x
( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )
= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2
= 2x2 + 6x + 17
( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10
= 2x2 - 7x - 15 + 6x - 2x2 + x - 10
= -25
( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x
= x3 + 53 - x( x2 - 8x + 16 ) + 16x
= x3 + 125 - x3 + 8x2 - 16x + 16
= 8x2 + 125
( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )
= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2
= -12x - 24 = -12( x + 2 )
Tương tự ...
a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)
b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)
c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)
a: \(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x-5}{2x\left(x+5\right)}=\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}\)
\(\Leftrightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)
\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)
\(\Leftrightarrow x^2+30x+25=x^2+25x\)
=>5x=-25
hay x=-5(loại)
b: \(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
=>2x+7=10
hay x=3/2
\(\dfrac{3}{2x+10}+\dfrac{3}{x-5}-\dfrac{2x}{x^2-25}\)
\(=\dfrac{3\left(x-5\right)}{2\left(x+5\right)\left(x-5\right)}+\dfrac{6\left(x+5\right)}{2\left(x+5\right)\left(x-5\right)}-\dfrac{4x}{2\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{3x-15+6x+30-4x}{2\left(x+5\right)\left(x-5\right)}\)
\(=\dfrac{5x+15}{2\left(x+5\right)\left(x-5\right)}\)
\(\dfrac{\left(x-5\right)}{x+5}-\dfrac{2x}{x-5}=\dfrac{x\left(x+10\right)}{25-x^2}\)
\(\dfrac{\left(x-5\right)}{5+x}+\dfrac{2x}{5-x}=\dfrac{x\left(x+10\right)}{25-x^2}\)
\(\dfrac{\left(x-5\right)^2}{25-x^2}+\dfrac{2x\left(x+5\right)}{25-x^2}=\dfrac{x^2+10x}{25-x^2}\)
\(\dfrac{x^2-10x+25}{25-x^2}+\dfrac{2x^2+10x}{25-x^2}-\dfrac{x^2+10x}{25-x^2}=0\)
\(\dfrac{x^2-10x+25+2x^2+10x-x^2-10x}{25-x^2}=0\)
\(\dfrac{25-10x}{25-x^2}=0\)
\(25-10x=0\)
\(10x=25\)
\(x=\dfrac{25}{10}=\dfrac{5}{2}\)