Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x/5=k => x = 5k
y/3= k => y = 3k
Theo bài ra ta có : x . y = 60
Hay 5k . 3k = 60
<=> 15k2 = 60
<=> k2 = 4
<=> k = +4 hoặc k = -4
Vậy x = 20 hoặc x = -20
y = 12 hoặc y = -12
x/5 = y/3 = k
=> x = 5k; y = 3k
=> xy = 5k.3k = 15k2 = 60
=> k2 = 4
=> k = 2 hoặc k = -2
*k = 2 => x = 2.5 = 10; y = 2.3 = 6
*k = -2 => x = -2.5 = -10; y = -2.3 = -6
vậy_
Áp dụng t/c dãy ................. :
\(\frac{x}{3}=\frac{y}{5}=\frac{x.y}{3.5}=\frac{60}{15}=4\)
\(\Rightarrow\frac{x}{3}=4\Rightarrow x=12\)
\(\Rightarrow\frac{y}{5}=4\Rightarrow y=20\)
Coi x/3=y/5=k=>x=3k,y=5k
Ta có : x.y=3k.5k=15.k2=60=>k2=60:15=4=>k=2;(-2)
Với k=2 =>x=6;y=10
Với k=(-2)=> x=(-6);y=(-10)
Gọi\(\frac{x}{5}=\frac{y}{3}=k\)\(\Rightarrow x=5k;y=3k\)\(\Rightarrow x\times y=5k\times3k=5\times k\times3\times k=60\)
\(\Rightarrow15k^2=60\) \(\Rightarrow k^2=60\div15\)\(\Rightarrow k^2=4\)\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\)
\(\Rightarrow x=10\)\(y=6\)
Với\(k=-2\)
\(\Rightarrow x=-10\)\(y=-6\)
a) Đặt \(\frac{x}{3}=\frac{y}{5}=k\) => x = 3k ; y = 5k
Do đó x . y = 3k . 5k = 15k2 = 60
=> k2 = 4 => k = + 2
- Với k = 2 thì x = 6 ; y = 10
- Với k = - 2 thì x = -6 ; y = -10
b) Tương tự
Vì \(\frac{x}{5}=\frac{y}{3}=>3x=5y\)
\(=>x=\frac{5}{3}y\)
Vì \(x.y=60\)
\(\Leftrightarrow\)\(\frac{5}{3}y.y=60\)
\(\Rightarrow\)\(y^2=60:\frac{5}{3}=36=>y=6\)
\(=>x=60:6=10\)
dễ
\(\frac{x}{5}=\frac{y}{3}=\frac{x.y}{5.3}=\frac{60}{15}=4\)
\(\frac{x}{5}=4\Rightarrow x=20\)
\(\frac{y}{3}=4\Rightarrow y=12\)
đặt \(\frac{x}{3}=\frac{y}{5}=k\)
nên 3k = x ; 5k = y
ta có x . y = 60
thay 3k . 5k = 60
15k2 = 60
k2 = 4
k = 2 hoặc k = -2
TH1 k = 2 x = 3 . 2 = 6 y = 5 . 2 =10 | TH2 k = -2 x = (-2).3=-6 y=(-2).5=-10 |
Đặt \(\frac{x}{3}=\frac{y}{5}=k\)
Ta có: \(x=3k;y=5k\)
\(\Rightarrow xy=15k^2\)
\(\Rightarrow60=15k^2\)
\(\Rightarrow k^2=60:15=4\)
\(\Rightarrow k=2\)
\(\Rightarrow x=2.3=6\)
\(y=2.5=10\)
Vậy x = 6 và y = 10
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
a) Ta có hệ phương trình:
x/8 = y/12
x + y = 60 Giải bằng cách thay x/8 bằng y/12 trong phương trình thứ hai, ta có:
(y/12)*8 + y = 60
2y + y = 60
y = 20 Thay y = 20 vào x + y = 60, ta có x = 40. Vậy kết quả là x = 40, y = 20.
b) Ta có hệ phương trình:
x/3 = y/6
x*y = 162 Thay x/3 bằng y/6 trong phương trình thứ hai, ta có:
y^2 = 324
y = 18 Thay y = 18 vào x/3 = y/6, ta có x = 9. Vậy kết quả là x = 9, y = 18.
c) Ta có hệ phương trình:
x/y = 2/5
xy = 40 Từ phương trình thứ nhất, ta có x = 2y/5. Thay vào xy = 40, ta có:
(2y/5)*y = 40
y^2 = 100
y = 10 Thay y = 10 vào x = 2y/5, ta có x = 4. Vậy kết quả là x = 4, y = 10.
d) Ta có hệ phương trình:
x/7 = y/6
y/8 = z/5
x + y - z = 37 Thay x/7 bằng y/6 trong phương trình thứ ba, ta có x = (7/6)*y - z. Thay y/8 bằng z/5 trong phương trình thứ ba, ta có y = (8/5)*z. Thay x và y vào phương trình thứ ba, ta được:
(7/6)*y - z + y - z = 37
(19/6)*y - 2z = 37 Thay y = (8/5)*z vào phương trình trên, ta có:
(19/6)*(8/5)*z - 2z = 37
z = 30 Thay z = 30 vào y = (8/5)*z, ta có y = 48. Thay y và z vào x/7 = y/6, ta có x = 35. Vậy kết quả là x = 35, y = 48, z = 30.
e) Ta có hệ phương trình:
10x = 15y = 21z
3x - 5z + 7y = 37 Từ phương trình thứ nhất, ta có:
x = 3z/7
y = 3z/5 Thay x và y vào phương trình thứ hai, ta có:
3z/73 - 5z + 73z/5 = 37
3z - 5z + 12z - 245 = 0
10z = 245
z = 24.5 Thay z = 24.5 vào x = 3z/7 và y = 3z/5, ta có x = 10.5 và y = 14.7. Tuy nhiên, kết quả này không phải là một cặp số nguyên. Vậy hệ phương trình không có nghiệm thỏa mãn.
đặt : x:5 = y:3 =k
=> x = 5.k và y = 3.k
=> 5k . 3k = 60
15.k^2 = 60
k^2 = 60 : 15
k^2 = 4
=> k^2 = 2^2
=> k = 2
Từ : x = 5.k = 5 . 2 = 10
y = 3.k = 3 . 2 = 6
Vậy : x = 10 và y = 6