![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(2x-3)2=(x+5)2
=>4x2-12x+9=x2+10x+25
=>3x2-22x-16=0
=>3x2+2x-24x-16=0
=>x(3x+2)-8(3x+2)=0
=>(x-8)(3x+2)=0
=>x=8 hoặc x=-2/3
b)X2.(x-1)-4x2+8x-4=0
=>x2(x-1)-4x2+4x+4x-4=0
=>x2(x-1)-4x(x-1)-4(x-1)=0
=>x2(x-1)-(4x-4)(x-1)=0
=>(x2-4x+4)(x-1)=0
=>(x-2)2(x-1)=0
=>x=2 hoặc x=1
c) 4x2- 25 - (2x- 5) . ( 2x+7)=0
=>4x2-25-(4x2+14x-10x-35)=0
=>4x2-25-4x2-14x+10x+35=0
=>-4x+10=0
=>-4x=-10 <=>x=5/2
d) x3+27+(x+3).(x-9)=0
=>x3+33+(x+3)(x-9)=0
=>(x+3)(x2-3x+9)+(x+3)(x-9)=0
=>(x2-3x+9+x-9)(x+3)=0
=>(x2-2x)(x+3)=0
=>x(x-2)(x+3)=0
=>x=0 hoặc x=2 hoặc x=-3
e) (x-2).(x+5)- x2+4=0
=>(x-2)(x+5)-(x-2)(x+2)=0
=>(x-2)(x+5-x-2)=0
=>3(x-2)=0 <=>x=2
Sau khi khai triển hằng đẳng thức và thực hiện chuyển vế bạn sẽ đk kết quả như này!(\(\left(2x-3\right)^2=\left(x+5\right)^2=3x^2-22x-14\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.(2x - 5)(3x + 4) - x(6x - 5) = 4
⇔ 6x2 +8x -15x-20-6x2+5x=4
⇔-2x=24
⇔ x=-12
vậy x=12
b.(x - 2)2 + x(x - 2) = 0
⇔(x-2)(x-2+x)=0
⇔(x-2) (2x-2)=0
⇔ (x-2)2(x-2)=0
⇔(x-2)2.2=0
⇔(x-2)2=0
⇔x-2=0
⇔x=2
vậy x=2
c.(x3 + 4x2 - x - 4) : (x + 4) = 0
⇔[(x3+4x2)-(x+4)] :(x+4)=0
⇔ [x2(x+4)-(x+4)] :(x+4)=0
⇔ (x+4)(x2-1):(x+4)=0
⇔(x-1)(x+1)=0
⇔ \(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
vậy \(\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^4-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt[4]{9}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^3+5x^2+3x=0\\ < =>x\left(2x^2+5x+3\right)=0\\ < =>x\left[2x\left(x+1\right)+3\left(x+1\right)\right]=0\\< =>x\left(2x+3\right)\left(x+1\right)=0\\ < =>\left[{}\begin{matrix}x=0\\2x+3=0\\x+1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\\-1\end{matrix}\right.\)
\(\left(x+5\right)\left(x-3\right)+x^2-25=0\\ < =>\left(x+5\right)\left(x+3\right)+\left(x-5\right)\left(x+5\right)=0\\ < =>\left(x+5\right)\left(x-3+x-5\right)=0\\ < =>\left(x+5\right)\left(2x-8\right)=0\\ < =>\left[{}\begin{matrix}x+5=0\\2x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(x\left(x-2\right)-3x+6=0\\ < =>x\left(x-2\right)-3\left(x-2\right)=0\\ < =>\left(x-2\right)\left(x-3\right)=0\\< =>\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
@Mốc
2x3 + 5x2 + 3x = 0
⇔ x.(2x2 + 5x + 3) = 0
⇔ x.(x + 1).(2x + 3) = 0
TH1: x = 0
TH2: x + 1 = 0
⇔ x = - 1
TH3: 2x + 3 = 0
⇔ x = \(\dfrac{-3}{2}\)
Vậy S = {0;- 1;\(\dfrac{-3}{2}\)}
(x + 5).(x - 3) + x2 - 25 = 0
⇔ (x + 5).(x - 3) + (x - 5).(x + 5) = 0
⇔ (x + 5).(x - 3 + x - 5) = 0
⇔ (x + 5).(2x - 8) = 0
TH1: x + 5 = 0
⇔ x = - 5
TH2: 2x - 8 = 0
⇔ x = 4
Vậy S = {- 5; 4}
x.(x - 2) - 3x + 6 = 0
⇔ x.(x - 2) - 3.(x - 2) = 0
⇔ (x - 2).(x - 3) = 0
TH1: x - 2 = 0
⇔ x = 2.
TH2: x - 3 = 0
⇔ x = 3
Vậy S = {2;3}
#chucbanhoctot:)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 :
a, Ta có : \(x^2-10x=-25\)
=> \(x^2-10x+25=0\)
=> \(\left(x-5\right)^2=0\)
=> \(x-5=0\)
=> \(x=5\)
Vậy phương trình có nghiệm là x = 5 .
b, Ta có : \(5x\left(x-1\right)=x-1\)
=> \(5x\left(x-1\right)-x+1=0\)
=> \(5x\left(x-1\right)-\left(x-1\right)=0\)
=> \(\left(5x-1\right)\left(x-1\right)=0\)
=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)
c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)
=> \(2\left(x+5\right)-x\left(x+5\right)=0\)
=> \(\left(2-x\right)\left(x+5\right)=0\)
=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 2, x = -5 .
d, Ta có : \(x^2-2x-3=0\)
=> \(x^2-3x+x-3=0\)
=> \(x\left(x+1\right)-3\left(x+1\right)=0\)
=> \(\left(x-3\right)\left(x+1\right)=0\)
=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = 3, x = -1 .
e, Ta có : \(2x^2+5x-3=0\)
=> \(2x^2+6x-x-3=0\)
=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)
=> \(\left(x+3\right)\left(2x-1\right)=0\)
=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)
\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)
Vậy nghiệm của phương trình trên là \(5\)
\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
=>(x-2)(x^2+4x+6)=0
=>x-2=0
=>x=2
b: =>(2x-5)(2x+5)-(2x-5)(2x+7)=0
=>(2x-5)(2x+5-2x-7)=0
=>2x-5=0
=>x=5/2
c: =>(x+3)(x^2-3x+9+x-9)=0
=>(x+3)(x^2-2x)=0
=>\(x\in\left\{0;2;-3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)
Ta có:
\(x^2+4x+6\)
\(=x^2+2.x.2+4+2\)
\(=\left(x+2\right)^2+2\)
Vì \(\left(x+2\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x
\(\Rightarrow x^2+4x+6\) vô nghiệm
\(\Rightarrow x-2=0\)
\(\Rightarrow x=2\)
b) \(3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
c) \(2\left(x+3\right)x^2-3x=0\)
\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)
\(\Rightarrow x\left(2x^2+6x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)
Ta có:
\(2x^2+6x-3\)
\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)
\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)
\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)
Vì \(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x
\(\Rightarrow2x^2+6x-3\) vô nghiệm
\(\Rightarrow x=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)
\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)
\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)
b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)
e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Ta có (x + 5)3 - x2 + 25 = 0
=> (x + 5)3 - (x2 - 25) = 0
=> (x + 5)3 - (x + 5)(x - 5) = 0
=> (x + 5)[(x + 5)2 - x + 5] = 0
=> (x + 5)(x2 + 9x + 30) = 0
=> x + 5 = 0 (Vì \(x^2+9x+30=\left(x^2+9x+\frac{81}{4}\right)+\frac{39}{4}=\left(x+\frac{9}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}>0\))
=> x = -5
Vậy x = -5