\(|x-4|>|x+1|\)

giải bpt

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

Nếu \(x< -1\) thì pt đề bài trở thành:

\(4-x>-x-1\)

\(\Leftrightarrow4>-1\) (luôn đúng)

Nếu \(-1\le x< 4\) thì pt trở thành:

       \(4-x>x+1\)       

\(\Rightarrow-x-x>1-4\Rightarrow-2x>-3\Rightarrow x< \frac{3}{2}\)

Kết hợp với điều kiện trên, ta được: \(-1\le x< \frac{3}{2}\)

Nếu \(x\ge4\) thì phương trình đề bài đã cho trở thành:

        \(x-4>x+1\Rightarrow-4>1\) (vô lý)

Vậy tập nghiệm là: \(S=\left\{-1\le x< \frac{3}{2}\right\}\)

21 tháng 11 2018

ĐKXĐ : \(x\ne-1\)

\(\left|\frac{3-2x}{1+x}\right|>4\)\(\Leftrightarrow\)\(\orbr{\begin{cases}\frac{3-2x}{1+x}>4\left(1\right)\\\frac{2x-3}{1+x}< -4\left(2\right)\end{cases}}\)

\(\left(1\right)\)\(\Leftrightarrow\)\(3-2x>4+4x\)\(\Leftrightarrow\)\(x< \frac{-1}{6}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(2x-3< -4-4x\)\(\Leftrightarrow\)\(x< \frac{-1}{6}\)

Vậy \(x< \frac{-1}{6}\)

PS : ko wen làm pt nên sai sót thì bỏ qua nhé :) 

18 tháng 9 2016

ko bít

18 tháng 9 2016

bạn học lớp nhiu

18 tháng 11 2018

Sửa đề : Tìm m để bpt \(4mx>x+1\)có nghiệm .......v..........v.............

Ta có : \(4mx>x+1\)

        \(\Leftrightarrow4mx-x>1\)

        \(\Leftrightarrow x\left(4m-1\right)>1\)

       \(\Leftrightarrow x>\frac{1}{4m-1}\)

Để x > 9 thì \(\frac{1}{4m-1}\ge9\)

           \(\Leftrightarrow1\ge9\left(4m-1\right)\)

          \(\Leftrightarrow1\ge36m-9\)

          \(\Leftrightarrow10\ge36m\)

           \(\Leftrightarrow m\le\frac{18}{5}\)

18 tháng 11 2018

a, Câu hỏi tương đương với đề bài vì nghiệm chính là x nên 2 câu tương đương nhau

b, -5 > x

Mà \(x>\frac{1}{4m-1}\)

\(\Rightarrow-5>\frac{1}{4m-1}\)

Giải ra tìm được m

12 tháng 7 2017

a/ \(x^2-2x-1< 0\)

\(\Leftrightarrow\left(x-1\right)^2< 2\)

\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)

\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

Câu 2 tự làm nhé.

12 tháng 7 2017

\(x^2-2x-1< 0\)

\(\left(x-2\right)x-1< 0\)

\(\left(x-2\right)x\le1\)

\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

14 tháng 6 2018

Bạn học đenta chưa

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

NV
10 tháng 3 2019

- Với \(x< 7\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) \(\Rightarrow VT>VP\Rightarrow\) BPT đúng \(\forall x< 7\)

- Với \(x\ge7\Rightarrow-x^2+3x+1< 0\) bất phương trình trở thành:

\(x^2-3x-1>x-7\Leftrightarrow x^2-4x+6>0\Leftrightarrow\left(x-2\right)^2+2>0\) (luôn đúng)

Vậy bất phương trình đã cho đúng \(\forall x\in R\)