Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) đk: \(x\ge1\)
Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)
\(\Leftrightarrow x-1=2x^2-2x\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
2) đk: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2=4x^2-4x+1\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)
=> PT vô nghiệm
3) đk: \(x\ge-1\)
Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)
\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)
\(\Leftrightarrow4\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Rightarrow x=0\)
4) đk: \(x\ge2\)
Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)
\(\Leftrightarrow x-2=x\left(x-2\right)\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
6) đk: \(x\ge-\frac{7}{5}\)
Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=2\)
\(\Leftrightarrow2x-3=2x-2\)
\(\Leftrightarrow0x=1\) vô lý
=> PT vô nghiệm
chủ yếu là bình phương hai vế,đặt ĐK rồi chuyển thành phương trình bậc hai rồi giải
1.\(ĐKXĐ:x\ge0\)
\(PT\Leftrightarrow x^2+x=x^2\Leftrightarrow x=0\)(t/m)
Vậy pt có nghiêm duy nhất là x=0
2.ĐKXĐ:\(1-x^2\ge0\Leftrightarrow-1\le x\le1\)
\(PT\Leftrightarrow1-x^2=x^2-2x+1\left(x\ge1\right)\)
\(\Leftrightarrow2x^2-2x=0\)
\(\Leftrightarrow2x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai,vi,x\ge1\right)\\x=1\left(chon\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm duy nhất là x=1
3.ĐKXĐ:\(x^2-4x+3\ge0\)
\(\sqrt{x^2-4x+3}=x-2\)
\(\Leftrightarrow x^2-4x+3=x^2-4x+4\left(x\ge2\right)\)
\(\Leftrightarrow0=1\left(Sai\right)\)
Vậy pt đã cho vô nghiệm
4.ĐKXĐ:\(x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
\(\sqrt{x^2-1}-x^2+1=0\)
\(\Leftrightarrow\sqrt{x^2-1}-\left(x^2-1\right)=0\)
\(\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm1\left(tm\right)\\\sqrt{x^2-1}=1\left(\cdot\right)\end{matrix}\right.\)
Giải (*): \(\left(\cdot\right)\Leftrightarrow x^2-1=1\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\left(tm\right)\)
Kết luận: tập nghiệm của pt là:\(S=\left\{\pm1;\pm\sqrt{2}\right\}\)
5.ĐKXĐ:\(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)
\(\sqrt{x^2-4}-x+2=0\)
\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-2\right)}-\left(x-2\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=\sqrt{x-2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x+2=x-2\Leftrightarrow2=-2\left(vo,li,nen,loai\right)\end{matrix}\right.\)
Vậy pt đã cho có nghiệm duy nhất là x=2
6.ĐKXĐ:\(1-2x^2\ge0\Leftrightarrow-\frac{\sqrt{2}}{2}\le x\le\frac{\sqrt{2}}{2}\)
\(\sqrt{1-2x^2}=x-1\)
\(\Leftrightarrow1-2x^2=x^2-2x+1\left(x\ge1\right)\)
\(\Leftrightarrow3x^2-2x=0\)
\(\Leftrightarrow x\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=\frac{2}{3}\left(loai\right)\end{matrix}\right.\)
Kết luận: PT đã cho vô nghiệm
I) xd mọi x
\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)
\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)
\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)
kết luận
\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
d) \(\sqrt{x+1}+2=0\)( ko tìm đc )
e) \(9x^2=4\Leftrightarrow x^2=\frac{4}{9}\Leftrightarrow x=\pm\sqrt{\frac{4}{9}}\)
g) \(2x^2=\frac{9}{50}\Leftrightarrow x^2=\frac{9}{100}\Leftrightarrow x=\pm\sqrt{\frac{9}{100}}\)
z) \(3-2x=1\Leftrightarrow2x=2\Leftrightarrow x=1\)
y) \(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\1-\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b,
+ Với \(x=0\) \(\Rightarrow PTVN\)
+ Với \(x\ne0\), chia cả 2 vế cho \(x^2\) :
\(PT\Leftrightarrow x^2-16x+46+\frac{144}{x}+\frac{81}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{81}{x^2}\right)-16\left(x-\frac{9}{x}\right)+46=0\)
Đặt \(x-\frac{9}{x}=t\Rightarrow t^2=x^2+\frac{81}{x^2}-18\)
\(\Leftrightarrow t^2+18-16t+46=0\)
\(\Leftrightarrow t^2-16t+64=0\Rightarrow t=8\)
\(\Leftrightarrow x-\frac{9}{x}=8\Leftrightarrow x^2-8x-9=0\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\) (t/m)
cậu xem làm được mấy bài kia không làm giùm với (đang gấp) :))
1.
\(x+4\sqrt{x}+3=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+\sqrt{x}+3\sqrt{x}+3=0\\ \Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=0\\ \Rightarrow x\in\varnothing\)
2.
\(x^2+3x\sqrt{x}+2x=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x^2+x\sqrt{x}+2x\sqrt{x}+2x=0\\ \Leftrightarrow x\sqrt{x}\left(\sqrt{x}+1\right)+2x\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0\)
3.
\(x+2\sqrt{x}-8=0\\ \Leftrightarrow x-2\sqrt{x}+4\sqrt{x}-8=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)+4\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\left(\sqrt{x}+4\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
4.
\(x+\sqrt{9x}-\sqrt{100}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow x+3\sqrt{x}-10=0\\ \Leftrightarrow x+5\sqrt{x}-2\sqrt{x}-10=0\\ \Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)=0\\ \Leftrightarrow\sqrt{x}-2=0\\ \Leftrightarrow x=4\)
5.
\(x+\sqrt{3x}-\sqrt{2x}-\sqrt{6}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+\sqrt{3}\right)-\sqrt{2}\left(\sqrt{x}+\sqrt{3}\right)=0\\ \Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-\sqrt{2}\right)=0\\ \Leftrightarrow\sqrt{x}-\sqrt{2}=0\Leftrightarrow x=2\)
6.
\(\sqrt{5x}-x-\sqrt{15}+\sqrt{3x}=0\left(ĐK:x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(\sqrt{5}-\sqrt{x}\right)-\sqrt{3}\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{x}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{3}=0\\\sqrt{5}-\sqrt{x}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
a)\(2\sqrt{3}-\sqrt{4+x^2}=0\)
\(\Leftrightarrow\sqrt{12}-\sqrt{4+x^2}=0\)
\(\Leftrightarrow\sqrt{4+x^2}=\sqrt{12}\)
\(\Leftrightarrow4+x^2=12\Leftrightarrow x^2=8\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=-2\sqrt{2}\end{matrix}\right.\)
vậy ....
b)\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\) điều kiện xác định x\(\ge0\)
\(\Leftrightarrow3\sqrt{2x}+5\sqrt{4}\sqrt{2x}-\sqrt{9}\sqrt{2x}=20\)
\(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)
\(\Leftrightarrow10\sqrt{2x}=20\Leftrightarrow\sqrt{2x}=2\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\) (tm)
Vậy ....
c)\(\sqrt{4\left(x+2\right)^2}=8\Leftrightarrow4\left(x+2\right)^2=64\)
\(\Leftrightarrow\left(x+2\right)^2=16\Leftrightarrow\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
Vậy ...
a) pt <=> \(\sqrt{4+x^2}=2\sqrt{3}\)
<=> x2 + 4 = 12
<=> x2 = 8
<=> x = \(\pm2\sqrt{2}\)
b) ĐKXĐ: x ≥ 0
pt <=> \(3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}=20\)
<=> \(10\sqrt{2x}\) = 20
<=> \(\sqrt{2x}=2\)
<=> x = 2 (TM)
c) pt <=> 2|x + 2| = 8
<=> |x + 2| = 4
<=> \(\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)
d) ĐKXĐ: x ≥ 2
pt <=> \(\sqrt{x-2}=3\sqrt{x^2-4}\)
<=> 9x2 - 12 = x - 2
<=> 9x2 - x - 10 = 0
<=> 9(x + 1)(x - \(\dfrac{10}{9}\)) = 0
<=> \(\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{9}\end{matrix}\right.\)(KTM)
e) pt <=> 4x + 1 = -7
<=> 4x = -8
<=> x = -2
x - 4\(\sqrt{x-1}\) + 3 = 0
(\(\sqrt{x-1}\) )2 - 4\(\sqrt{x-1}\) + 4 = 0
△ = (-4)2 -4.4 = 0
\(\sqrt{x-1}\) = 2
x - 1 = 4
x = 5