Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(-\frac{x}{2}=\frac{-y}{4}=\frac{6}{-8}\)
=>\(\frac{-x}{2}=\frac{6}{-8}\)
=>-8.(-x)=6.2
=>8x=12
=>x=3/2
lại có:
\(\frac{-y}{4}=\frac{6}{-8}\)
=>-8.(-y)=6.4
=>8y=24
=>y=3
Vậy x=3/2; y=3
\(a,\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
vậy_____
\(x=\dfrac{4}{27}-\dfrac{2}{3}\)
\(x=-\dfrac{14}{27}\)
Tìm các số nguyên x và y, biết: xy-2x+y=7
xy-2x+y=7
x(y-2)+y=7
x(y-2)+(y-2)=5
(x+1)(y-2)=5
Vì x;y là số nguyên => x+1 và y-2 nguyên
=> x+1;y-2 \(\in\)Ư(5)
Ta có bảng:
x+1 | 1 | 5 | -1 | -5 |
y-2 | 5 | 1 | -5 | -1 |
x | 0 | 4 | -2 | -6 |
y | 7 | 3 | -3 | 1 |
Vậy ................................................................................................................................
xy-2x+y=7
=>x(y-2)+(y-2)=5
=>(x+1)(y-2)=5
Vì x,y thuộc Z nên x+1,y-2 thuộc Z
=>x+1,y-2 thuộc ước của 5
Lập bảng :
x+1 | -5 | -1 | 1 | 5 |
y-2 | -1 | -5 | 5 | 1 |
x | -6 | -2 | 0 | 4 |
y | 1 | -3 | 7 | 3 |
Vậy các cặp (x;y) thỏa mãn là : (-6;1) ; (-2;3) ; (0;7) ; (4;3)
\(\left(3x+\dfrac{3}{5}\right)\left(\left|x\right|-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|=\dfrac{1}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=\dfrac{1}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{1}{5};\dfrac{1}{4};-\dfrac{1}{4}\right\}\)
⇒\(\left\{{}\begin{matrix}3x+\dfrac{3}{5}=0\\\left|x\right|-\dfrac{1}{4}=0\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}3x=0-\dfrac{3}{5}=-\dfrac{3}{5}\\\left|x\right|=0+\dfrac{1}{4}=\dfrac{1}{4}\end{matrix}\right.\)
⇒\(\left\{{}\begin{matrix}x=-\dfrac{3}{5}:3=-\dfrac{1}{5}\\x=\dfrac{1}{4},-\dfrac{1}{4}\end{matrix}\right.\)
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
x : 4 , y : 4 thì x + y = bao nhiêu
Thiếu dữ kiện đề bài rồi nha bạn
HT
thiếu thông tin, nên ko thể trả lời