K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)

\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)\(x-y-z=-27\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)

Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)

          \(\frac{y}{14}=9\Rightarrow y=9.14=126\)

         \(\frac{z}{10}=9\Rightarrow z=9.10=90\)

Vậy:\(x=189;y=126\)\(z=90\)

20 tháng 12 2018

b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)\(x^2-2y^2+z^2=18\)

\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)\(x^2-2y^2+z^2=18\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)

Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)

\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)

\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)

Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)

6 tháng 8 2020

Ta có\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{-3}.\frac{1}{-2}=\frac{y}{7}.\frac{1}{-2}\Rightarrow\frac{x}{6}=\frac{y}{-14}\left(1\right)\)

\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-2}.\frac{1}{7}=\frac{z}{5}.\frac{1}{7}\Rightarrow\frac{y}{-14}=\frac{z}{35}\left(2\right)\)

Từ (1)(2)

=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)

=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{-12+56+175}=\frac{146}{219}=\frac{2}{3}\)

=> \(\hept{\begin{cases}\frac{x}{6}=\frac{2}{3}\\\frac{y}{-14}=\frac{2}{3}\\\frac{z}{35}=\frac{2}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

7 tháng 8 2020

Bài làm:

Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{-6}=\frac{y}{14}\left(1\right)\)

và \(\frac{y}{-2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{-35}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta được:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{12-56-175}=\frac{146}{-219}=-\frac{2}{3}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{-6}=-\frac{2}{3}\\\frac{y}{14}=-\frac{2}{3}\\\frac{z}{-35}=-\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)

Vậy \(x=4\) ; \(y=-\frac{28}{3}\) và \(z=\frac{70}{3}\)

18 tháng 5 2016

1.

\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}=>\frac{y}{15}=\frac{z}{21}\)

=>\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)

=> x=2x10=20

y=2x15=30

z=2x21=42

18 tháng 5 2016

2.

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y-2z}{4-6-6}=\frac{36}{-8}=-\frac{9}{2}\)

=> x=\(-\frac{9}{2}x1=-\frac{9}{2}\)

y=\(-\frac{9}{2}x2=-9\)

z=\(-\frac{9}{2}x3=-\frac{27}{2}\)

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)

31 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{7}\)=> \(\frac{x}{-6}=\frac{y}{14}\)(1)

\(\frac{y}{-2}=\frac{z}{5}\)=> \(\frac{y}{14}=\frac{z}{-35}\)(2)

Từ (1), (2) => \(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)và -2x - 4y + 5z = 146

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{-2.\left(-6\right)-4.14+5\left(-35\right)}=\frac{146}{-219}=-\frac{2}{3}\)

=> x = \(-\frac{2}{3}.\left(-6\right)\)= 4

     y = \(-\frac{2}{3}.14\)\(-\frac{28}{3}\)

     z = \(-\frac{2}{3}.\left(-35\right)\)\(\frac{70}{3}\)

=>x/6=y/-14

y/-14=z/35

=>x/6=y/-14=z/35

=>-2x/-12=4y/-56=5z/175

=>-2x-4y+5z/-12+56+175=146/219=2/3

=>x=4,y=-28/3,z=70/3