Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5x^3+x=0\)\(\Rightarrow x\left(5x^2+1\right)=0\)
Vì \(5x^2+1>0\Rightarrow x=0\)
\(b,x^3+3x^2+3x+2=0\)
\(\Rightarrow x^3+2x^2+x^2+2x+x+2=0\)
\(\Rightarrow x^2\left(x+2\right)+x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow x+2=0\Leftrightarrow x=-2\)
= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)
x =0
CX100%
Ta có : (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\-3x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1;1\\x=0\end{cases}}\)
+) (5x-1). (2x+3)-3. (3x-1)=0
10x^2+15x-2x-3 - 9x+3=0
10x^2 +8x=0
2x(5x+4)=0
=> x=0 hoặc x= -4/5
+) x^3 (2x-3)-x^2 (4x^2-6x+2)=0
2x^4 -3x^3 -4x^4 + 6x^3 - 2x^2=0
-2x^4 + 3x^3-2x^2=0
x^2(-2x^2+x-2)=0
-2x^2(x-1)^2=0
=> x=0 hoặc x=1
+) x (x-1)-x^2+2x=5
x^2 -x -x^2+2x=5
x=5
+) 8 (x-2)-2 (3x-4)=25
8x - 16-6x+8=25
2x=33
x=33/2
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=$1-\sqrt{2};\sqrt{2}+1$1−√2;√2+1
Vậy A ko xảy ra GTLN
Để A đạt GTLN
=>x2 -2x đạt giá trị dương nhỏ nhất
=>x2-2x=1
=>x2-2x-1=0
=>x=\(1-\sqrt{2};\sqrt{2}+1\)
Vậy A ko xảy ra GTLN
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(x^3-3^3+x\left(2^2-x^2\right)=1\)
\(x^3-27+4x-x^3=1\)
\(4x-27=1\)
\(4x=28\)
\(x=7\)
Vậy x = 7
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Rightarrow x^3-3^3+x\left(2^2-x^2\right)=1\)
\(\Rightarrow x^3-27+4x-x^3=1\)
\(\Rightarrow4x-27=1\)
\(\Rightarrow4x=28\)
\(\Rightarrow x=7\)
Vậy \(x=7\)