K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

(x3)(x2+3x+9)(3x17)=x312(x−3)(x2+3x+9)−(3x−17)=x3−12

x(x2+3x+9)3(x2+3x+9)3x+17=x312⇒x(x2+3x+9)−3(x2+3x+9)−3x+17=x3−12

x3+3x2+9x3x29x273x+17=x312⇒x3+3x2+9x−3x2−9x−27−3x+17=x3−12

x3+(3x23x2)+(9x9x)3x10=x3+12⇒x3+(3x2−3x2)+(9x−9x)−3x−10=x3+12

x33x10=x3+12⇒x3−3x−10=x3+12

x33x1012=x3⇒x3−3x−10−12=x3

x33x22=x3⇒x3−3x−22=x3

3x22=0⇒3x−22=0

3x=22x=223

(x−3)(x^2+3x+9)−(3x−17)=x^3−12

⇔x^3−27−3x+17=x^3−12

⇔−10−3x=−12

⇔3x=2

⇔x=2/3

Vậy...

5 tháng 10 2020

Bài 1 :

a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)

b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)

\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)

\(=-1+\left(-2\right)=-1-2=-3\)

c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)

Bài 2 :

a)  \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)

=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)

=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)

b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)

=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)

=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)

c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>

27 tháng 6 2019

Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu

27 tháng 6 2019

a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14) 

=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84

=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84) 

=> 156 -  56x = 24x - 324 

=>  24x + 56x = 324 + 156 

=> 80x = 480 

=> x = 480 : 80 =  6 

Vậy x = 6 

14 tháng 4 2023

Bài 1: 

a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)

\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)

\(\Rightarrow16x-5=x-2\)

\(\Rightarrow16x-x=5-2\)

\(\Rightarrow15x=3\)

\(\Rightarrow x=\dfrac{15}{3}=5\)

b) \(12x^2-4x\left(3x+5\right)=10x-17\)

\(\Rightarrow12x^2-12x^2-20x=10x-17\)

\(\Rightarrow-20x=10x-17\)

\(\Rightarrow-20x-10x=-17\)

\(\Rightarrow-30x=-17\)

\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)

c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)

\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)

\(\Rightarrow-8x=12\)

\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)

Bài 2: 

a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)

\(=x^2-7x+5x-35-7x^2+21x\)

\(=-6x^2+19x-35\)

b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)

\(=x^3-x^2-2x-x^2+x-5x-5\)

\(=x^3-2x^2-6x-5\)

c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)

\(=x^2-7x-5x+35-x^2-3x+4x-12\)

\(=11x+23\)

d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)

\(=x^2-2x-x+2-x^2+2x+5x+10\)

\(=4x+12\)

13 tháng 7 2019

a. x/2-3x/5+13/5=-7/5-7/10x

    -7/5-x/2+3x/5-13/5=7/10x

    -x/2+3x/5-4=7/10x

    7/10x-3x/5+x/2=-4

    7x-6x+5x/10=-4

     6x=-40

     x=-20/3

`@` `\text {Ans}`

`\downarrow`

Thực hiện phép tính ;-;?

\((x+3) (x^2-3x+9) + (x-3) ( x^2+3x+9 )\)

`= x(x^2 - 3x + 9) + 3(x^2 - 3x + 9) + x(x^2 + 3x + 9) - 3(x^2 + 3x + 9)`

`= x^3 - 3x^2 + 9x + 3x^2 - 9x + 27 + x^3 + 3x^2 + 9x - 3x^2 - 9x - 27`

`= (x^3 + x^3) + (-3x^2 + 3x^2 + 3x^2 - 3x^2) + (9x - 9x + 9x - 9x) + (27 - 27)`

`= 2x^3`

3 tháng 8 2023

=x3+33+x3-33

=2x3

11 tháng 7 2023

a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)

\(\Rightarrow-12< x< -8\)

\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)

b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)

\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)

\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)

c) \(3,456< x\le7,89\)

\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)

d) \(5,82< \overline{5,8x0}< 8,845\)

\(\Rightarrow x\in\left\{3;4\right\}\)

e) \(32,82< \overline{3x,850}< 35,845\)

\(\Rightarrow x\in\left\{3;4\right\}\)