Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-4\right)^4=\left(x-4\right)^2\\ \Rightarrow\left(x-4\right)^2\left[\left(x-4\right)^2-1\right]=0\\ \Rightarrow\left(x-4\right)\left(x-4-1\right)\left(x-4+1\right)=0\\ \Rightarrow\left(x-4\right)\left(x-5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=4\\x=5\end{matrix}\right.\)
a)\(x+\frac{1}{3}=\frac{3}{4}\)
\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{12}\)
b)\(x-\frac{2}{5}=\frac{5}{7}\)
\(\Rightarrow x=\frac{5}{7}+\frac{2}{5}\)
\(\Rightarrow x=1\frac{4}{35}\)
c)\(-x-\frac{2}{3}=-\frac{6}{7}\)
\(\Rightarrow-x=-\frac{6}{7}+\frac{2}{3}\)
\(\Rightarrow-x=-\frac{4}{21}\)
\(\Rightarrow x=\frac{4}{21}\)
d)\(\frac{4}{7}-x=\frac{1}{3}\)
\(x=\frac{4}{7}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{21}\)
ta có:
(x+3).(x+4)>0
<=>x^2 + 7x + 12 > 0.
ta thấy phương trình x^2 + 7x +12 = 0 có 2 nghiệm x1= - 4
x2= - 3
hệ số a = 1 >0
vậy nghiệm của bất phương trình đã cho là x< - 4 hoặc x > -3.
Có thể xảy ra hai trường hợp:
TH1: x + 3>0 và x + 4 >0 ==>x> - 3 và x> -4 ==>x> - 3(1)
TH2: x + 3<0 và x + 4 > 0 ==> x< -3 và x<-4 ==>x< - 4 (2)
Từ (1) và (2) ta suy ra nghiệm của bất phương trình đã cho là x> - 3 và x <-4
ờ thế yêu cầu đề là j mà kêu giúp ???
minh ko hieu