Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-2}{2016}+\dfrac{x-4}{1009}+\dfrac{x-6}{2020}=-4\)
\(\Leftrightarrow\) \(\dfrac{x-2}{2016}+1+\dfrac{x-4}{1009}+2+\dfrac{x-6}{2020}+1=0\)
\(\Leftrightarrow\) \(\dfrac{x-2+2016}{2016}+\dfrac{x-4+2018}{1009}+\dfrac{x-6+2020}{2020}=0\)
\(\Leftrightarrow\) \(\dfrac{x-2014}{2016}+\dfrac{x-2014}{1009}+\dfrac{x-2014}{2020}=0\)
\(\Leftrightarrow\) \(\left(x-2014\right)\left(\dfrac{1}{2016}+\dfrac{1}{1009}+\dfrac{1}{2020}\right)=0\)
\(\Leftrightarrow\) x - 2014 = 0
\(\Leftrightarrow\) x = 2014
Vậy............
\(\dfrac{x-2}{2016}+\dfrac{x-4}{1009}+\dfrac{x-6}{2020}=-4\)
<=>\(\dfrac{x-2}{2016}+1+\dfrac{x-4}{1009}+2+\dfrac{x-6}{2020}+1=0\)
<=>\(\dfrac{x+2014}{2016}+\dfrac{x+2014}{1009}+\dfrac{x+2014}{2020}=0\)
<=>\(\left(x+2014\right)\left(\dfrac{1}{2016}+\dfrac{1}{1009}+\dfrac{1}{2020}\right)=0\)
vì 1/2016+1/1009+1/2020 khác 0
=>x+2014=0<=>x=-2014
Ta có: \(x^2+y^2=1\Leftrightarrow\left(x^2+y^2\right)^2=1\) (1)
Thay (1) vào \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\) ta được:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\Leftrightarrow\frac{x^4b+y^4a}{ab}=\frac{x^4+2x^2y^2+y^4}{a+b}\)
\(\Leftrightarrow\left(x^4b+y^4a\right)\left(a+b\right)=\left(x^4+2x^2y^2+y^4\right)ab\)
\(\Leftrightarrow x^4ab+x^4b^2+y^4a^2+y^4ab=x^4ab+2x^2y^2ab+y^4ab\)
\(\Leftrightarrow x^4b^2+y^4a^2=2x^2y^2ab\)
\(\Leftrightarrow\left(x^2b\right)^2-2x^2y^2ab+\left(y^2a\right)^2=0\)
\(\Leftrightarrow\left(x^2b-y^2a\right)^2=0\)
\(\Leftrightarrow x^2b-y^2a=0\)
\(\Leftrightarrow x^2b=y^2a\)
\(\Rightarrow\frac{x^2}{a}=\frac{y^2}{b}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\left(\frac{x^2}{a}\right)^{1009}=\left(\frac{y^2}{b}\right)^{1009}=\left(\frac{1}{a+b}\right)^{1009}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}=\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}\)
\(\Rightarrow\frac{x^{2018}}{a^{1009}}+\frac{y^{2018}}{b^{1009}}=\frac{1}{\left(a+b\right)^{1009}}+\frac{1}{\left(a+b\right)^{1009}}=\frac{2}{\left(a+b\right)^{1009}}\left(đpcm\right)\)
Ta có : \(\frac{x-4}{2016}+\frac{x-4038}{1009}+\frac{x+1004}{1008}=2\)
=> \(\frac{1009\left(x-4\right)}{2034144}+\frac{2016\left(x-4038\right)}{2034144}+\frac{2018\left(x+1004\right)}{2034144}=2\)
=> \(1009\left(x-4\right)+2016\left(x-4038\right)+2018\left(x+1004\right)=4068288\)
=> \(1009x-4036+2016x-8140608+2018x+2026072=4068288\)
=> \(5043x=10186860\)
=> \(x=2020\)
Vậy phương trình có nghiệm là x = 2020 .
\(\Leftrightarrow\frac{x-4}{2016}-1+\frac{x-4038}{1009}+2+\frac{x+1004}{1008}-3=0\)
\(\Leftrightarrow\frac{x-2020}{2016}+\frac{x-2020}{1009}+\frac{x-2020}{1008}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2016}+\frac{1}{1009}+\frac{1}{1008}\right)=0\)
\(\Rightarrow x=2020\)