K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

\(\left(x+3\right)\left(1-x\right)>0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0.\\1-x>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0.\\1-x< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-3.\\x< 1.\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3.\\x>1.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow-3< x< 1.\)

\(\left(x^2-1\right)\left(x^2-4\right)< 0.\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-1< 0.\\x^2-4>0.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-1>0.\\x^2-4< 0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2< 1.\\x^2>4.\end{matrix}\right.\\\left\{{}\begin{matrix}x^2>1.\\x^2< 4.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1.\\x>-1.\end{matrix}\right.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\\left[{}\begin{matrix}x< 2.\\x>-2.\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-1< x< 1.\\\left[{}\begin{matrix}x>2.\\x< -2.\end{matrix}\right.\end{matrix}\right.\\\left\{{}\begin{matrix}\left[{}\begin{matrix}x>1.\\x< -1.\end{matrix}\right.\\-2< x< 2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2.\\x< -2.\\-2< x< -1.\\1< x< 2.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< -2.\\x>2.\end{matrix}\right.\)

https://olm.vn/hoi-dap/detail/13844641.html

https://h.vn/hoi-dap/question/55030.html

bạn tham khảo hai link này nè

Học tốt

Nếu thấy hay thì cho mk 1 ckkk nhé

31 tháng 3 2020

lên lớp 8 ròi làm ddaaau có sao

21 tháng 6 2017

a) Ta có: \(x^2\ge0\forall x\in Q\)

\(y^2\ge0\forall x\in Q\)

\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)

\(\left(y-4\right)^2\ge0\forall x\in Q\)

\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)

c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)

\(\left|x-3\right|\ge0\forall x\in Q\)

\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)

Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)

21 tháng 6 2017

ghi đề kiểu này khó nhìn quá

7 tháng 1 2018

a, => x+5>0;x-4>0 hoặc x+5<0;x-4<0

=> x>4 hoặc x<-5

b, Vì x-3 < x+7 => x-3<0;x+7>0

=> x<3;x>-7 => -7<x<3

c, Vì x^2+1 >0 => x+3 > 0 => x>-3

d, Vì x^2-4 > x^2-16

=> x^2-4>0;x^2-16<0

=> x^2>4;x^2<16

=> 4<x^2<16

=> 2 < = x < = 4 hoặc -4 < = x < = -2

Tk mk nha

26 tháng 11 2016

X.(X^2014+2016)>0

do đó x>0

do X^2+2016>0 

nên X-3<0

Suy ra:x<3

15 tháng 1 2022

undefinedĐề kia bị dính vào nhau, các bạn nhìn ảnh cho rõ nhé

15 tháng 1 2022

giúp mình với tối nay mình cần gấp r ạ

1 tháng 1 2017

Các bạn trình bày đầy đủ cho mình nhé.

22 tháng 1 2019

\(\left(x-3\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)

\(\Rightarrow x\in\left\{3;12\right\}\)

\(\left(x^2-81\right)\left(x^2+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)

\(\Rightarrow x=9\)

\(\left(x-4\right)\left(x+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu

\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)

\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)

Vậy \(x\in\left\{-1;0;1;2;3\right\}\)