Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{3}+\frac{x-1}{5}+\frac{x-1}{7}+....+\frac{x-1}{99}=0\)
\(\left(x-1\right).\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)=0\)
Vì \(\left(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....+\frac{1}{99}\right)>0\)
\(\Rightarrow x-1=0\)
=> x = 1
Bài 3 :
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)
Ta có : \(\frac{1}{1\times2}=\frac{2-1}{1\times2}=\frac{2}{1\times2}-\frac{1}{1\times2}=1-\frac{1}{2}\)
\(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{99\times100}=\frac{100-99}{99\times100}=\frac{100}{99\times100}-\frac{99}{99\times100}=\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{38\times39}\)
Ta có : \(\frac{1}{10\times11}=\frac{11-10}{10\times11}=\frac{11}{10\times11}-\frac{10}{10\times11}=\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11\times12}=\frac{12-11}{11\times12}=\frac{12}{11\times12}-\frac{11}{11\times12}=\frac{1}{11}-\frac{1}{12}\)
\(\frac{1}{38\times39}=\frac{39-38}{38\times39}=\frac{39}{38\times39}-\frac{38}{38\times39}=\frac{1}{38}-\frac{1}{39}\)
\(\frac{1}{39\times40}=\frac{40-39}{39\times40}=\frac{40}{39\times40}-\frac{39}{39\times40}=\frac{1}{39}-\frac{1}{40}\)
\(\Rightarrow B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)
\(B=\frac{1}{10}-\frac{1}{40}\)
\(B=\frac{3}{40}\)
3.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{38.39}+\frac{1}{39.40}\)
\(B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)
\(B=\frac{1}{10}-\frac{1}{40}\)
\(B=\frac{3}{40}\)
Đặt phân thức trên là D
=> D=(1+1+1+1+...+1+2013/2+2012/3+...+2/2013+1/2014)/(1/2+1/3+1/4+...+1/2014)
=> D=(1+2013/2+1+2012/3+1+2011/4+...+1+2/2013+1+1/2014+1)/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=(2015/2+2015/3+2015/4+...+2015/2013+2015/2014+1)/(1/2+1/3+1/4+...+1/2014)
=> D=[2015*(1/2+1/3+1/4+1/5+....+1/2014)]/(1/2+1/3+1/4+1/5+...+1/2014)
=> D=2015
\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{8}\)
\(=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{3.7}+\frac{1}{7.8}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}+0+0+...+0\)
\(=\frac{7}{8}\)
a) \(x+4\frac{1}{5}=5\frac{2}{3}\times10\frac{1}{2}\)
\(x+\frac{21}{5}=\frac{17}{3}\times\frac{21}{2}\)
\(x+\frac{21}{5}=\frac{119}{2}\)
\(x=\frac{119}{2}-\frac{21}{5}\)
\(x=\frac{553}{10}\)
b) \(\frac{24}{5}-x=2\frac{1}{4}:1\frac{3}{4}\)
\(\frac{24}{5}-x=\frac{9}{4}:\frac{7}{4}\)
\(\frac{24}{5}-x=\frac{9}{4}.\frac{4}{7}\)
\(\frac{24}{5}-x=\frac{9}{7}\)
\(x=\frac{24}{5}-\frac{9}{7}\)
\(x=\frac{123}{35}\)
TS :
3 + 5 + 7 + ... + 2015
SSH là : ( 2015 - 3 ) : 2 + 1 = 1007 ( số )
Tổng là : ( 2015 + 3 ) . 1007 : 2 = 4064252
→Vì TS : MS = 1 => TS = MS
Ta có : 2 + 4 + 6 + ... + 2014 + x = 4 064 252
2 + 4 + 6 + ... + 2014 = 4 064 252 - x
SSH ở vế trái là : ( 2014 - 2 ) : 2 + 1 = 1007 ( số )
Tổng là : ( 2014 + 2 ) . 1007: 2 = 4 060 224
Vậy x là : 4 064 252 - 4 060 224 = 4028
Vậy x là 4028
\(x+3\frac{1}{2}+x=24\frac{1}{4}\)
\(2x=24+\frac{1}{4}-3-\frac{1}{2}\)
\(2x=20+1+\frac{1}{4}-\frac{2}{4}\)
\(2x=20+\frac{3}{4}\)
\(2x=\frac{83}{4}\)
\(x=\frac{83}{4}:2\)
\(x=\frac{83}{8}\)
\(x+3\frac{1}{2}+x=24\frac{1}{4}\)
\(\Leftrightarrow x+\frac{7}{2}+x=\frac{97}{4}\)
\(\Leftrightarrow x+x=\frac{97}{4}-\frac{7}{2}\)
\(\Leftrightarrow2x=\frac{83}{4}\)
\(\Leftrightarrow x=\frac{83}{8}\)