Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ x . (x - 3) = 0}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
vậy_______
1 ) 5 - ( 10 - x ) = 7
10 - x = 5 - 7
10 - x = - 2
x = 10 - ( - 2 )
x = 12
Vậy x = 12
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
Bài 4:
a. Ta thấy:
$|x|\geq 0; |y-1|\geq 0$ với mọi $x,y$
$\Rightarrow$ để tổng $|x|+|y-1|=0$ thì:
$|x|=|y-1|=0\Rightarrow x=0; y=1$.
b. Ta thấy:
$|x-1|\geq 0; |2y-4|\geq 0$
$\Rightarrow |x-1|+|2y-4|\geq 0$ với mọi $x,y$.
Do đó không tồn tại $x,y$ để $|x-1|+|2y-4|<0$
a. Vì \(\left|x+3\right|\ge0;\left|y-2\right|\ge0\)
Mà | x + 3 | + | y - 2 | = 0
=> x + 3 = y - 2 = 0
=> x = -3; y = 2
b. |-x + 5| = |1 - 5|
=> |5 - x| = |-4|
=> 5 - x = -4 hoặc 5 - x = -(-4)
=> x = 5 - (-4) hoặc 5 - x = 4
=> x = 5 + 4 hoặc x = 5 - 4
=> x = 9 hoặc x = 1
c. -11 - |x| = -17
=> |x| = -11 - (-17)
=> |x| = -11 + 17
=> |x| = 6
=> x = 6 hoặc x = -6
d. |x - 2| + |2y + 4| = 0
=> x - 2 = 2y + 4 = 0
=> x = 2; y = -2
e. (x - 1) . (y + 2) = 1
=> (x - 1) . (y + 2) = 1 . 1 = (-1) . (-1)
+) x - 1 = y + 2 = 1
=> x = 2; y = -1
+) x - 1 = y + 2 = -1
=> x = 0; y = -3
a) x = -3 ; y = 2
b) x = 1
c) x = 6 ; -6
d) x = 2 ; y = -2
e) x = 2 ; y = -1
| x-3 | = 4x
☛ x-3 = 4x
⇒ -3 = 4x -x
⇒ -3 = 3x
☛ x = ( -3):3
x = -1
HOẶC x-3= -(4x)
x-3 = (-4)(-x)
=> -3=(-4)(-x)-x
=> -3 = -3 . x
x = 1
vay x=1 hoac -1