Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn
t i c k nha!! 536457567586876968978987979578674
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
=> 4x2+12x+9-4x2+1=22
=> 12x=12
=>x=1
c) (4x+3)(4x-3) -(4x-5)^2 =16
=>16x2-9-16x2+40x-25=16
=>40x=50
=>x=4/5
a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)
vậy...
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a) (x-2)(x-1) = x(2x+1) + 2
⇔ x2 - x - 2x + 2 = 2x2 + x + 2
⇔ x2 - 2x2 - x - 2x - x = 2 - 2
⇔ -x2 - 4x = 0
⇔ x(-x - 4) = 0
⇔\(\left[{}\begin{matrix}x=0\\-x-4=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) (x+2)(x+2) - (x-2)(x-2) = 8x
⇔ x2 + 2x + 2x + 4 - x2 + 2x + 2x - 4 = 8x
⇔ 8x = 8x
⇒ x có vô số nghiệm
c) (2x-1)(x2-x+1) = 2x3-3x2+2
⇔ 2x3 - 2x2 + 2x - x2 + x -1 = 2x3 - 3x2 + 2
⇔ 3x = 3
⇔ x = 1
d) (x+1)(x2+2x+4) - x3 - 3x2 + 16 = 0
⇔ x3 + 2x2 + 4x + x2 + 2x + 4 -x3 - 3x2 +16= 0
⇔ 6x + 20 = 0
⇔ x = \(-\frac{20}{6}\)
.e) (x+1)(x+2)(x+5) - x3-8x2=27
⇔ (x2 +2x + x+2)(x+5) -x3-8x2=27
⇔ (x2 + 3x + 2)(x+5)-x3 - 8x2 = 27
⇔ x3 + 5x2 + 3x2 + 15x + 2x + 10 - x3 - 8x2 =27
⇔ 17x = 17
⇔ x = 1
Bài 2: Tìm x
a) Ta có: (x-2)(x-1)=x(2x+1)+2
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0x=0\)
Vậy: S={x|\(x\in R\)}
c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x+20=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\frac{10}{3}\)
Vậy: \(S=\left\{-\frac{10}{3}\right\}\)
e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow2x=27-10=17\)
hay \(x=\frac{17}{2}\)
Vậy: \(S=\left\{\frac{17}{2}\right\}\)
a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27
⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27
⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29
⇔ -2x – 3x = 24 – 29
⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1
Tập nghiệm của phương trình : S = {1}
b) x2 – 4 – (x + 5)(2 – x) = 0
⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0
⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0
⇔ x = 2 hoặc x = -7/2
Tập nghiệm của phương trình: S = {2; -7/2 }
c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)
⇔ x ≠ 2 và x ≠ -2
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4
⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = {1/2}
d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)
⇔ x ≠ 1 và x ≠ -3
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0
⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = ∅
\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)
\(< =>2x^2-2x-24=2x^2+3x-2-27\)
\(< =>5x=-24+29=5\)
\(< =>x=\frac{5}{5}=1\)