K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

x = 117

25 tháng 11 2021

X = 90 +27

X= 117

8 tháng 9 2020

45 x 8 - 90 x 4 + 45

=360 + 360 + 45

=765

8 tháng 9 2020

360+360+45

765

10 tháng 7 2016

 

a)ĐK: 2x+1>0

\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)

\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)

Nhân \(log_3\left(2x+1\right)\)cả 2 vế

Đặt \(t=log_3\left(2x+1\right)\)

\(\Leftrightarrow t^2-t-2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm

b)ĐK x>0

\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)

Đặt \(t=log_{27}x\)

\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)

 

25 tháng 10 2018

Đáp án A

29 tháng 3 2016

Viết phương trình về dạng

\(\frac{2^x}{3^x+4^x}-\frac{4^x}{9^x+16^x}=\frac{-5}{2x}\) hay \(\frac{2^x}{3^x+4^x}+\frac{5}{x}=\frac{2^{2x}}{3^{2x}+4^{2x}}+\frac{5}{2x}\)

Xét hàm số \(f\left(t\right)=\frac{2^t}{3^t+4^t}+\frac{5}{t}\) luôn đồng biến

Đáp số : Phương trình vô nghiệm

29 tháng 10 2023

= 99871201.7627

29 tháng 10 2023

bịp

26 tháng 2 2021

câu này là tìm cực đại mà??? Nếu vậy chỉ cần vẽ bảng biến thiên rồi đếm số điểm cực đại đúng ko???

NV
26 tháng 2 2021

Bài này khá dễ, chỉ cần tìm số nghiệm bội lẻ và dương của \(f'\left(x\right)=0\), gọi nó là k thì số cực trị của \(f\left(\left|x\right|\right)=2k+1\) (do đồ thị đối xứng qua Oy đồng thời luôn nhận \(x=0\) là 1 cực trị)

\(f'\left(x\right)=0\) có các nghiệm bội lẻ dương là 2; 3; 7; 25 tổng cộng 4 nghiệm

Do đó \(f\left(\left|x\right|\right)\) có 9 cực trị

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:
Đặt \(\left\{\begin{matrix} 2^x=a\\ 3^{x-1}=b\end{matrix}\right.\)

\(\text{BPT}\Leftrightarrow 3ab+1\leq a^3-b^3\)

\(\Leftrightarrow a^3-b^3-1-3ab\geq 0\)

\(\Leftrightarrow (a-b-1)(a^2+b^2+1+ab+a-b)\geq 0\) (*)

(sd hằng đẳng thức phân tích bậc 3 dạng \(x^3+y^3+z^3-3xyz\) )

\(a^2+b^2+1+ab+a-b=\frac{(a+b)^2+(a+1)^2+(b-1)^2}{2}\geq 0\) nên từ (*) suy ra \(a-b-1\geq 0\)

\(\Leftrightarrow 2^x-3^{x-1}-1\geq 0\Leftrightarrow 3.2^x-3^x-3\geq 0\)

Xét \(f(x)=3.2^x-3^x-3\Rightarrow f'(x)=\ln 8.2^x-\ln 3.3^x\)

\(f'(x)=0\Leftrightarrow x=\log_{\frac{2}{3}}\frac{\ln 3}{\ln 8}\)

Lập bảng biến thiên ta thấy đồ thị hàm số f(x) cắt y=0 tại 2 điểm \(x=1; x=2\); và đoạn đồ thị có giá trị không âm đi từ x=1 đến x=2

Do đó \(f(x)\geq 0\Leftrightarrow 1\leq x\leq 2\)

NV
16 tháng 4 2021

a.

\(\left(\dfrac{1}{3}\right)^x=27\Rightarrow x=log_{\dfrac{1}{3}}27=-3\)

b.

\(4^x=\dfrac{\sqrt{2}}{8}\Rightarrow x=log_4\left(\dfrac{\sqrt{2}}{8}\right)=-\dfrac{5}{4}\)

c.

\(\left(0.2\right)^x=10\Rightarrow x=log_{0,2}10=-log_510\)

22 tháng 3 2018

Chọn C