K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2024

\(\left(x-2\right)^2+\left(x-1\right)\cdot\left(x^2+x+1\right)-x\cdot\left(x-2\right)\cdot\left(x+2\right)\)

\(=x^2-4x+4+x^3-1^3-x\cdot\left(x^2-4\right)\)

\(=x^2-4x+4+x^3-1-x^3+4x\)

\(=\left(x^3-x^3\right)+\left(-4x+4x\right)+x^2+\left(4-1\right)\)

\(=x^2+3\)

16 tháng 8 2024

A = (\(x-2\))2 + (\(x-1\))(\(x^2\) + \(x+1\)) - \(x\)(\(x-2\))(\(x+2\))

A = \(x^2-4x+4\) + \(x^3\) - 1 - \(x\)(\(x^2\) - 4)

A = \(x^2\) - 4\(x\) + 4 + \(x^{ }\)3 - 1 - \(x^3\) + 4\(x\)

A = \(x^2\) + (4 - 1) + (4\(x\) - 4\(x\)) + (\(x^3\) - \(x^3\))

A = \(x^2\) + 3 + 0 + 0

A = \(x^2\) + 3

 

16 tháng 8 2016

\(\left(x-1\right)\left(x+2\right)+\left(x+1\right)x=x^2+2x-x-2+x^2+x=\left(x^2+x^2\right)+\left(2x-x+x\right)-2=2x^2+2x-2=2\left(x^2+x-1\right)\)

16 tháng 8 2016

\(\left(x-1\right)\left(x+2\right)+\left(x+1\right)\)

\(=x^2+2x-x-2+x+1\)

\(=x^2+2x-x+x-2+1\)

\(=x^2+2x-1\)

tíc mình nha

13 tháng 3 2022

đk : x >= 0 ; x khác 4 

\(B=\left(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\dfrac{\sqrt{x}-2}{2}=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\left(x-4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

18 tháng 3 2022

a, ĐKXĐ:\(\left\{{}\begin{matrix}x^2-1\ne0\\x+1\ne0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\x\ne-1\\x\ne1\end{matrix}\right.\Leftrightarrow x\ne\pm1\)

b, \(P=\dfrac{2x^2}{x^2-1}+\dfrac{x}{x+1}-\dfrac{x}{x-1}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2}{\left(x+1\right)\left(x-1\right)}+\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}-\dfrac{x^2+x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2+x^2-x-x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x^2-2x}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(\Rightarrow P=\dfrac{2x}{x+1}\)

c, Thay x=2 vào P ta có:

\(P=\dfrac{2x}{x+1}=\dfrac{2.2}{2+1}=\dfrac{4}{3}\)

18 tháng 3 2022

Bài `1:`

`a)`

Để `P` có nghĩa thì:

`{(x^2-1\ne0),(x+1\ne0),(x-1\ne0):}`

`<=>x\ne+-1`

`b)`

`P=(2x^2)/(x^2-1)+x/(x+1)-x/(x-1)(x\ne+-1)`

`P=(2x^2)/((x-1)(x+1))+(x.(x-1))/((x+1)(x-1))-(x.(x+1))/((x-1)(x+1))`

`P=(2x^2+x^2-x-x^2-x)/((x-1)(x+1))`

`P=(2x^2-2x)/((x-1)(x+1))`

`P=(2x.(x-1))/((x-1)(x+1))=2x/(x+1)`

`c)`

Với `x=2`

`P=(2.2)/(2+1)=4/3`

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.

a: \(P=\dfrac{1}{x+1}-\dfrac{x^3-x}{x^2+1}\cdot\dfrac{1}{x^2+2x+1}-\dfrac{1}{x^2-1}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x^2-1\right)}{x^2+1}\cdot\dfrac{1}{\left(x+1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{1}{x+1}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-1-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{\left(x+1\right)\left(x-1\right)}-\dfrac{x\left(x-1\right)}{\left(x^2+1\right)\left(x+1\right)}\)

\(=\dfrac{\left(x-2\right)\left(x^2+1\right)-x\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{x^3+x-2x^2-2x-x^3+2x^2-x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

\(=\dfrac{-2x}{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}\)

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3            a, Rút gọn A.            b, Tìm các giá trị của x để A = 3Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2            a, Rút gọn biểu thức,            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 ,...
Đọc tiếp

Bài 1: Cho biểu thức: A= (x^2-3/x^2-9  + 1/x-3):x/x+3

            a, Rút gọn A.

            b, Tìm các giá trị của x để A = 3

Bài 2: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) Với x khác 2 và -2

            a, Rút gọn biểu thức,

            b, Tìm các giá trị nguyên của x để A nhận giá trị nguyên.

Bài 3: Cho biểu thức A = 2x/x+3 + x+1/x-3 + 3x-11x/9-x^2, với x khác 3 , -3

            a, Rút gọn biểu thức A.

            b, Tính giá trị của A khi x=5

            c, Tìm gái trị nguyên của x để biểu thức A có giá trị nguyên.

Bài 4: Cho biểu thức: A = (x/x^2-4 + 1/x+2 - 2/x-2) : (1- x/x+2) , với x khác 2 .-2

            a, Rút gọn A.

            b, Tính giá trị của A khi x = -4

            c, Tìm các giá trị nguyên của x để A có giá trị là số nguyên.

1

Bài 1: 

a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)

b: Để A=3 thì 3x-9=x+1

=>2x=10

hay x=5

Bài 2: 

a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)

\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)

b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;1;5;-1\right\}\)

a) Ta có: \(P=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\cdot\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\left(\dfrac{x^2-x-2}{x^2}\right)\)

\(=\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x^2-x-2\right)}{x^2}\)

\(=\dfrac{x\left[x^2-4x+4+4x\right]}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

b) Thay \(x=\dfrac{1}{2}\) vào P, ta được:

\(P=\dfrac{1}{2}+1=\dfrac{3}{2}\)

8 tháng 11 2016

câu rút gọn = 7

câu tính nhanh mik chịu thông cảm nha

8 tháng 11 2016

giải ra luôn đi bạn

19 tháng 6 2015

x(x+4)(x-4)-(x^2+1)(x^2-1)=x(x2-16)-(x4-1)

=x3-16x-x4+1