K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2020

Ta có\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\frac{x-2}{2016}+1+\frac{x-3}{2017}+1+\frac{x-4}{2018}=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\) Vì \(\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)>0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)

\(\frac{2-x}{2016}-1=\frac{1-x}{2017}+\frac{x}{2018}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x}{4070306}+\frac{2017x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-2018x+2017x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1=\frac{1-x}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}-1+1=\frac{1-x}{4070306}+1\)

\(\Rightarrow\frac{2-x}{2016}=\frac{1-x+4070306}{4070306}\)

\(\Rightarrow\frac{2-x}{2016}=\frac{4070307-x}{4070306}\)

\(\Rightarrow4070306.\left(2-x\right)=2016.\left(4070307-x\right)\)

\(\Rightarrow8140612-4070306x=8205738912-2016x\)

\(\Rightarrow-4070306x+2016x=8205738912-8140612\)

\(\Rightarrow-4068290x=8197598300\)

\(\Rightarrow x=4,95\)

Vậy x=4,95

Chúc bn học tốt

19 tháng 2 2020

\(\frac{x-2}{2016}+\frac{x-3}{2017}+\frac{x-4}{2018}+3=0\)

\(\Leftrightarrow\left(\frac{x-2}{2016}+1\right)+\left(\frac{x-3}{2017}+1\right)+\left(\frac{x-4}{2018}+1\right)=0\)

\(\Leftrightarrow\frac{x+2014}{2016}+\frac{x+2014}{2017}+\frac{x+2014}{2018}=0\)

\(\Leftrightarrow\left(x+2014\right)\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)

Mà \(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\ne0\)

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow x=-2014\)

Vậy \(x=-2014\)

26 tháng 1 2019

\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+2017}{3}+\frac{x+2016}{4}\)

\(\Leftrightarrow\frac{x+1}{2019}+1+\frac{x+2}{2018}+1=\frac{x+2017}{3}+1+\frac{x+2016}{4}+1\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}-\frac{x+2020}{3}-\frac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right).\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)=0\)

Mà \(\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{3}-\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy...

28 tháng 2 2020

Ta có : \(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}+\frac{x+2038}{6}=0\)

=> \(\frac{x+2}{2018}+1+\frac{x+3}{2017}+1+\frac{x+4}{2016}+1+\frac{x+2038}{6}-3=0\)

=> \(\frac{x+2}{2018}+\frac{2018}{2018}+\frac{x+3}{2017}+\frac{2017}{2017}+\frac{x+4}{2016}+\frac{2016}{2016}+\frac{x+2038}{6}-\frac{18}{6}=0\)

=> \(\frac{x+2000}{2018}+\frac{x+2000}{2017}+\frac{x+2000}{2016}+\frac{x+2000}{6}=0\)

=> \(\left(x+2000\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}+\frac{1}{6}\right)=0\)

=> \(x+2000=0\)

=> \(x=-2000\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{-2000\right\}\)

5 tháng 10 2021

a, TK:

(x lẻ do \(2y^2-8y+3=2\left(y^2-4y\right)+3=x^2\) lẻ)

\(b,\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+4y+4\right)=9\\ \Leftrightarrow\left(x-2\right)^2+\left(y+2\right)^2=9\)

Vậy pt vô nghiệm do 9 ko phải tổng 2 số chính phương

 

26 tháng 2 2018

\(\frac{x+1}{2018}-\frac{x+2}{2017}=\frac{x+3}{2016}+1\)

\(\Leftrightarrow\frac{x+1}{2018}+1-\left(\frac{x+2}{2017}+1\right)=\frac{x+3}{2016}+1\)

\(\Leftrightarrow\frac{x+2019}{2018}-\frac{x+2019}{2017}=\frac{x+2019}{2016}\)

\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)

Có: \(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\ne0\)

\(\Leftrightarrow x+2019=0\Leftrightarrow x=-2019\)

Vậy...

27 tháng 1 2019

\(\dfrac{x+1}{2019}+\dfrac{x+2}{2018}=\dfrac{x+2017}{3}+\dfrac{x+2016}{4}\)

\(\Leftrightarrow\left(\dfrac{x+1}{2019}+1\right)+\left(\dfrac{x+2}{2018}+1\right)=\left(\dfrac{x+2017}{3}+1\right)+\left(\dfrac{x+2016}{4}+1\right)\)

\(\Leftrightarrow\dfrac{x+2020}{2019}+\dfrac{x+2020}{2018}-\dfrac{x+2020}{3}-\dfrac{x+2020}{4}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x+2020=0\) ( do \(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{3}-\dfrac{1}{4}\ne0\))

\(\Leftrightarrow x=-2020\)

Vậy phương trình có tập nghiệm S = \(\left\{-2020\right\}\)