Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
\(\Leftrightarrow2x^3-3x^2+x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\)
\(\Leftrightarrow2\left(-27\right)-3\cdot9-3+a=0\\ \Leftrightarrow-54-27-3+a=0\\ \Leftrightarrow-84+a=0\\ \Leftrightarrow a=84\)
\(a,\left|2x+\dfrac{1}{2}\right|=0\\ \Leftrightarrow2x+\dfrac{1}{2}=0\\ \Leftrightarrow2x=-\dfrac{1}{2}\\ \Leftrightarrow x=-\dfrac{1}{4}\\ b,\left|3x+\dfrac{3}{4}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{3}{4}=3\\3x+\dfrac{3}{4}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{9}{4}\\3x=-\dfrac{15}{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
b: \(=\dfrac{3a-9-2a-6-6}{\left(a+3\right)\left(a-3\right)}=\dfrac{a-15}{a^2-9}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2022}+1\right)+\left(\dfrac{x+3}{2020}+1\right)+\left(\dfrac{x+5}{2018}+1\right)+\left(\dfrac{x+7}{2016}+1\right)=0\)
=>x+2023=0
=>x=-2023
Bài 1:
a) \(x\left(x+1\right)+x\left(x-1\right)-2x^2\)
\(=x^2+x+x^2-x-2x^2\)
\(=2x^2-2x^2\)
\(=0\)
b) \(\left(x+2\right)\left(x^2-x+1\right)-\left(x-2\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+2x^2-2x+2-x^3-x^2-x+2x^2+2x+2\)
\(=\left(x^3-x^3\right)+\left(-x^2+2x^2-x^2+2x^2\right)+\left(x-2x-x+2x\right)+\left(2+2\right)\)
\(=2x^2+4\)
c) \(\left(3-x\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left[\left(x-3\right)+\left(x+7\right)\right]^2\)
\(=\left(x-3+x+7\right)^2\)
\(=\left(2x+4\right)^2\)
\(\dfrac{x+2}{x-3}+\dfrac{x-2}{x}=\dfrac{x^2+2x+6}{x\left(x-3\right)}\) đkxđ: x khác 3 , x khác 0
\(\Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-3\right)}+\dfrac{\left(x-2\right)\left(x-3\right)}{x\left(x-3\right)}-\dfrac{x^2+2x+6}{x\left(x-3\right)}=0\)
\(\Leftrightarrow\dfrac{x^2+2x}{....}+\dfrac{x^2-3x-2x+6}{.....}-\dfrac{x^2+2x+6}{...}=0\)
\(\Leftrightarrow x^2+2x+x^2-3x-2x+6-x^2-2x-6=0\)
\(\Leftrightarrow x^2-5x=0\)
\(\Leftrightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\left(tm\right)\\x=5\left(tm\right)\end{matrix}\right.\)
Đặt x - 2021 = a
=> x - 2020 = a + 1
x - 2022 = a - 1
2x - 4042 = 2a
Thay các giá trị vào biểu thức ta có
\(\left(a+1\right)^3+\left(a-1\right)^3=\left(2a\right)^3\)
\(\Leftrightarrow a^3+3a^2+3a+1+a^3-3a^2+3a-1=8a^3\)
\(\Leftrightarrow6a=6a^3\)
\(\Leftrightarrow6a\left(a^2-1\right)=0\)
\(\Leftrightarrow a\left(a-1\right)\left(a+1\right)=0\)
\(\Leftrightarrow\begin{cases}a=0\Rightarrow x=2021\\a=1\Rightarrow x=2022\\a=-1\Rightarrow x=2020\end{cases}\)
Vậy x = 2020 hoặc x = 2022 hoặc x = 2021