Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)
b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)
c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)
\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)
\(\Rightarrow x=-2\)
d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)
\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{25}{9}\)
e) \(\dfrac{1}{2}x+650\%x-x=-6\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)
\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)
\(\Rightarrow6x=-6\)
\(\Rightarrow x=\dfrac{-6}{6}=-1\)
g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)
\(\Rightarrow2x-1-3+x=2-x\)
\(\Rightarrow3x-4=2-x\)
\(\Rightarrow3x+x=2+4\)
\(\Rightarrow4x=6\)
\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
Lời giải:
a. Do $|x+1|+|x+2|\geq 0$ với mọi $x$ theo tính chất trị tuyệt đối
$\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2>0\Rightarrow |x+1|=x+1; |x+2|=x+2$. Khi đó:
$(x+1)+(x+2)=x$
$\Leftrightarrow x=-3$ (loại do $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
b. Tương tự phần a:
$|x+1|+|x+2|+|x+3|\geq 0\Rightarrow 2x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1, x+2, x+3>0$
$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Khi đó:
$(x+1)+(x+2)+(x+3)=2x$
$\Leftrightarrow x=-6< 0$ (loại)
Vậy không tồn tại $x$ thỏa mãn.
c.
$|x+1|+|x+2|+|x+3|+|x+4|\geq 0$
$\Rightarrow 3x\geq 0\Rightarrow x\geq 0$
$\Rightarrow x+1,x+2, x+3, x+4>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)=3x$
$4x+10=3x$
$x=-10< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa mãn
d.
$|x+1|+|x+2|+|x+3|+|x+4|+|x+5|\geq 0$
$\Rightarrow 4x\geq 0\Rightarrow x\geq 0\Rightarrow x+1,x+2,x+3,x+4,x+5>0$
$\Rightarrow |x+1|=x+1, |x+2|=x+2, |x+3|=x+3, |x+4|=x+4, |x+5|=x+5$. Khi đó:
$(x+1)+(x+2)+(x+3)+(x+4)+(x+5)=4x$
$5x+15=4x$
$x=-15< 0$ (loại vì $x\geq 0$)
Vậy không tồn tại $x$ thỏa đề.
1: (x-1)(x-2)<=0
=>1<=x<=2
mà x là số nguyên
nên \(x\in\left\{1;2\right\}\)
2: \(\left(2x-4\right)\left(2x-10\right)< 0\)
=>4<2x<10
=>2<x<5
mà x là số nguyên
nên \(x\in\left\{3;4\right\}\)
4: \(\left(x^2-7\right)\left(x^2-1\right)< =0\)
\(\Leftrightarrow1\le x^2\le7\)
mà x là số nguyên
nên \(x\in\left\{1;-1;2;-2\right\}\)
Nhiều câu quá >.<
a/ \(2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20.\)
\(2x^2+10x=x^2+6x+9+x^2-2x+1+20.\)
\(10x=4x+30\)
\(6x=30\Rightarrow x=5\)
các câu còn lại tương tự
\(a,2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
\(\Leftrightarrow2x^2+10x=x^2+6x+9+x^2-2x+1+20\)
\(\Leftrightarrow2x^2+10x=2x^2+4x+30\)
\(\Leftrightarrow2x^2+10x-2x^2-4x=30\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
Vậy ...........
\(b,\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+15x-6x-30\)
\(\Leftrightarrow4x^2-8x+4=4x^2+11x-29\)
\(\Leftrightarrow4x^2-8x-4x^2-11x=-29-4\)
\(\Leftrightarrow-19x=-33\)
\(\Leftrightarrow x=\frac{33}{19}\)
Vậy...........
\(c,\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2x^2+2x-4x-4+38\)
\(\Leftrightarrow2x^2+4x+10=2x^2-2x+34\)
\(\Leftrightarrow2x^2+4x-2x^2+2x=34-10\)
\(\Leftrightarrow6x=24\)
\(\Leftrightarrow x=4\)
Vậy.............
\(d,\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-1\right)-18\)
\(\Leftrightarrow x^3+6x+12x+8-\left(x^3-6x+12x-8\right)=12x^2-12x-8\)
\(\Leftrightarrow x^3+6x+12x+8-x^3+6x-12x+8=12x^2-12x-8\)
\(\Leftrightarrow12x=-24\)
\(\Leftrightarrow x=-2\)
Vậy............
`+)axx2+bxx1=cxx2+axx1<=>2a+b=2c+a<=>2c-a=b`
`+)cxx3+axx1=bxx2+axx1<=>3c+a=2b+a<=>3c=2b<=>c=2/3b`
mà `2c-a=b` nên `a=2c-b=4/3b-b=1/3b`
Khi đó: `cxx2+axx2=2(a+c)=2(1/3b+2/3b)=2b`
Vậy dấu hỏi chấm cần điền là `2`
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+1}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+1}=0\)
\(\left(x-2\right)^{x+1}\left(x-2-1\right)=0\)
\(\left(x-2\right)^{x+1}\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2\right)^{x+1}=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x=3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy x = { 2; 3 }
\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+1}\)
\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+1}=0\)
\(\left(x-2\right)^{x+1}\left(x-2-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)