K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2018

a. Vì n thuộc N* nên ta xét 2 trường hợp sau:

+ Nếu n là số lẻ => n+1 là số chẵn

                          => n+1 chia hết cho 2

                          => (n+1)(3n+2)  chia hết cho 2

                          => (n+1)(3n+2) là một số chẵn

+ Nếu n là số chẵn => 3n là số chẵn

                               => 3n+2 là một số chẵn

                               => 3n+2 chia hết cho 2

                               =>(n+1)(3n+2)  chia hết cho 2

                               => (n+1)(3n+2) là một số chẵn

Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn

b, Vì 6x+11y chia hết cho 31

=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)

=> 6x+42y chia hết cho 31

=>6.(x + 7y) chia hết cho 31

=>x+7y chia hết cho 31 (Vì (6,31) = 1)

Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31

15 tháng 6 2018

1. A.

\(n+2⋮n+1\) 

\(\Rightarrow\left(n+1\right)+1⋮\left(n+1\right)\) 

Mà \(\left(n+1\right)⋮\left(n+1\right)\)

Nên \(1⋮\left(n+1\right)\)  

\(\Rightarrow\left(n+1\right)€\)Ư(1)

       (n+1) € {1;—1}

TH1: n+1=1                  TH2: n+1=—1

         n    =1–1                       n    =—1 —1

         n    =0                           n    =—2

Vậy n€{0;—2}

15 tháng 6 2018

1a) 

n+2 chia hết cho n-1

hay (n-1)+3 chia hết cho n-1 (vì (n-1)+3=n+2)

Mà (n-1) chia hết cho n-1

nên 3 chia hết cho n-1

Suy ra n-1 thược Ư(3)={1;-1;3;-3}

Suy ra n thuộc {2;0;4;-2}

b) 3n-5 chia hết cho n-2

hay (3n-6)+1 chia hết cho n-2 (vì (3n-6)+1=3n-5)

3(n-2)+1 chia hết cho n-2

Mà 3(n-2) chia hết cho n-2

nên 1 chia hết cho n-2

Suy ra n-2 thược Ư(1)={1;-1}

Suy ra n thuộc {3;1}

28 tháng 7 2021

Ta có: 6x+11y=6x+11y+31y=6x+42y=6.(x+7y)

Mà 6 và 31 là 2 số nguyên tố cùng nhau

⇒ x+7y⋮31

x+7y=6.(x+7y)=6x+42y=6x+11y+31y

Mà 6 và 31 là 2 số nguyên tố cùng nhau, 31y⋮31

⇒ 6x+11y⋮31

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31

7 tháng 3 2020

có : 6(x + 7y) = 6x + 42y = 6x + 11y + 31y

6x + 11y chia hết cho 31; 31y chia hết cho 31

=> 6(x + 7y) chia hết cho 31

=> x + 7y chia hết cho 31  

làm ngược lại 

7 tháng 3 2020

Gọi  A =  6x + 7y − 6x + 11y
⇒A = 6x + 42y − 6x − 11y

=> A = y(42 − 11)= 31y
Vì 31y chia hết cho 31 và 6x + 11y chia hết cho 31
Nên 6 (x+7y) chia hết cho 31.
Do ƯCLN(6;31) = 1 nên x+7y chia hết cho 31
Vậy : Nếu 6x + 11y chia hết cho 31 thì x + 7y chia hết cho 31

30 tháng 6 2016

6x+11y chia hết cho 31
=>6(6x+11y) chia hết cho 31
=>36x+66y chia hết cho 31
=>31x+31y+5x+35y chia hết cho 31
Vì 31(x+y) chia hết cho 31=>5(x+7y) chia hết cho 31
Mà ƯCLN(5;31)=1=>x+7y chia hết cho 31

x+7y chia hết cho 31
=>6(x+7y) chia hết cho 31
=>6x+42y chia hết cho 31
=>6x+11y+31y chia hết cho 31
Vì 31y chia hết cho 31=>6x+11y chia hết cho 31

30 tháng 6 2016

Ta xét : P= \(6\left(x+7y\right)-\left(6x+11y\right)\)=\(6x+42y-6x-11y\)=\(31y⋮31\)

Mặt khác: \(6x+11y⋮31\)

=> \(6\left(x+7y\right)⋮31\)(1)

Mà \(ƯCLN_{\left(6;31\right)}=1\)(2)

Từ (1)(2)=> x+7y chia hết cho 11(đpcm)

a: 

6x+11y chia hết cho 31

=>6x+11y+31y chia hết cho 31

=>6x+42y chia hết cho 31

=>x+7y chia hết cho 31

b: x+7y chia hết cho 31

=>6x+42y chia hét cho 31

=>6x+11y chia hết cho 31

27 tháng 1 2016

bn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

tick

30 tháng 12 2017

vì 6x + 11y \(⋮\)31

\(\Rightarrow\)6x + 11y + 31y \(⋮\)31

\(\Rightarrow\)6x + 42y \(⋮\)31

\(\Rightarrow\)6x + 7y \(⋮\)31 mà ( 6 ; 31 ) = 1

\(\Rightarrow\)x + 7y \(⋮\)31