Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)
<=> 13(x + 1) - 2(5x + 3) = x + 7
<=> 13x + 13 - 10x - 6 = x + 7
<=> 3x + 7 = x + 7
<=> 3x + 7 - x = 7
<=> 2x + 7 = 7
<=> 2x = 7 - 7
<=> 2x = 0
<=> x = 0
c) 2x + 4(x - 2) = 5
<=> 2x + 4x - 8 = 5
<=> 6x - 8 = 5
<=> 6x = 5 + 8
<=> 6x = 13
<=> x = 13/6
a) \(\Leftrightarrow\left(-63x^2+78x-15\right)+\left(63x^3+x-20\right)=44\)
\(\Leftrightarrow-63x^2+78x-15+63x^2+x-20=44\)
\(\Leftrightarrow79x-35=44\)
\(\Leftrightarrow79x=44+35\)
\(\Leftrightarrow79x=79\)
\(\Leftrightarrow x=1\)
b) \(\Leftrightarrow\left(x^2+3x+2\right).\left(x+5\right)-x^2.\left(x+8\right)=27\)
\(\Leftrightarrow x.\left(x^2+3x+2\right)+5.\left(x^2+3x+2\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+3x^2+2x+5x^2+15x+10-x^3-8x^2=27\)
\(\Leftrightarrow17x+10=27\)
\(\Leftrightarrow17x=17\)
\(\Leftrightarrow x=1\)
Ta có:\(P=\frac{x-4}{x-2}=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\)
Sau đó tự làm nha tại vì mk chưa học
a, \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(=-15x^2+10x+12x-8=-15x^2+22x-8\)
Thay x = -2 vào biểu thức ta có : \(-15\left(-2\right)^2+22\left(-2\right)-8\)
\(=-15.4-44-8=-112\)
b, \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(=2x^2+3x-18x-27=2x^2-15x-27\)
Thay x = -1/2 vào biểu thức ta có : \(2\left(-\frac{1}{2}\right)^2-15\left(-\frac{1}{2}\right)-27\)
\(=2.\frac{1}{4}+\frac{15}{2}-27=\frac{11}{2}+\frac{15}{2}+27=40\)
Bài làm:
a) \(A=\left(-5x+4\right)\left(3x-2\right)+\left(-2x+3\right)\left(x-2\right)\)
\(A=-15x^2+22x-8-2x^2+7x-6\)
\(A=-17x^2+29x-14\)
Thay x = -2 vào ta được:
\(A=-17.\left(-2\right)^2+29.\left(-2\right)-14\)
\(A=-68-58-14\)
\(A=-140\)
b) \(B=\left(x-9\right)\left(2x+3\right)-2\left(x+7\right)\left(x-5\right)\)
\(B=2x^2-15x-27-2\left(x^2+2x-35\right)\)
\(B=2x^2-15x-27-2x^2-4x+70\)
\(B=-19x+43\)
Thay x = -1/2 vào B ta được:
\(B=-19.\left(-\frac{1}{2}\right)+43=\frac{19}{2}+43=\frac{105}{2}\)
( 2x - 1 ) - x = 0
=> 2x - 1 = x
=> 2x - x = 1
=> x = 1
( x - 1 )( 2x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=\frac{3}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3/2 }
\(\frac{x}{x+1}=\frac{x+2}{x-1}\)( đkxđ : \(x\ne\pm1\))
( Chỗ này chưa học kĩ nên chưa hiểu lắm :]
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Rightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Rightarrow\left[x^2+4x-5\right]\left[x^2+4x-5-16\right]=297\)
Đặt \(x^2+4x-5=t\)
\(\Rightarrow t\left(t-16\right)=297\)
\(\Rightarrow t^2-16t+64=297+64\)
\(\Rightarrow\left(t+8\right)^2=361\)
\(\Rightarrow\left[{}\begin{matrix}t+8=19\\t+8=-19\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=11\\t=-27\end{matrix}\right.\)
Ta có : \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]=297\)
\(\Leftrightarrow\left(x^2-x+5x-5\right)\left(x^2-3x+7x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+4x-21\right)=297\)
\(\Leftrightarrow\left(x^2+4x-13+8\right)\left(x^2+4x-13-8\right)=297\)
\(\Leftrightarrow\left(x^2+4x-13\right)^2-64=297\)
\(\Leftrightarrow\left(x^2+4x-13\right)^2=361\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-13=19\\x^2+4x-13=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+4x+4-17=19\\x^2+4x+4-17=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^2-17=19\\\left(x+2\right)^2-17=-19\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^2=36\\\left(x+2\right)^2=-2\left(VL\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)