Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/giai-phuong-trinh-x-1-x-22-x-1-x-4-32x-4-x-42-0-1
chỉ tiềm thấy cái này thôi ~ vì mk k thể giải đc nên nhờ mạng nên thông cảm cho nha
\(\left(x-1\right)^3+x^3+\left(x+1\right)^3=\left(x+2\right)^3\)
\(\Leftrightarrow x^3-3x^2+3x-1+x^3+x^3+3x^2+3x+1-x^3-6x^2-12x-8=0\)
\(\Leftrightarrow2x^3-6x^2-6x-8=0\)
\(\Leftrightarrow2.\left(x^3-3x^2-3x-4\right)=0\)
\(\Leftrightarrow x^3-4x^2+x^2-4x+x-4=0\)
\(\Leftrightarrow x^2.\left(x-4\right)+x.\left(x-4\right)+\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right).\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
a, x3-3x2+3x-1=0 b, (2x-5)2-(x+2)2=0 c, x2-x=3x-3
<=>x3-x2-2x2+2x+x-1=0 <=>(2x-5-x-2)(2x-5+x+2)=0 <=>x2-x-3x+3=0
<=>(x3-x2)-(2x2-2x)+(x-1)=0 <=>(x-7)(3x-3)=0 <=>x2-4x+3=0
<=>x2(x-1)-2x(x-1)+(x-1)=0 <=>x-7=0 hoặc 3x-3=0 <=>x2-x-3x+3=0
<=>(x-1)(x2-2x+1)=0 1, x-7=0 2, 3x-3=0 <=>(x2-x)-(3x-3)=0
<=>(x-1)(x-1)2=0 <=>x=7 <=>x=1 <=>x(x-1)-3(x-1)=0
<=>x-1=0 Vậy TN của PT là S={7;1} <=>(x-1)(x-3)=0
<=>x=1 <=>x-1=0 hoặc x-3=0
Vậy tập nghiệm của phương trình là S={1} 1, x-1=0 2, x-3=0
<=>x=1 <=>x=3
Vậy TN của PT là S={1;3}
(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2
Có trên google ( ghi nguồn đầy đủ )
đặt \(t=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
phương trình đã cho trở thành : \(t^2+t-12=0\)
phương trình này có nghiệm dương t=3. từ đó suy ra 2 nghiệm đã cho là x=1 , x=2
(x2 + x + 1)2 + (x2 + x + 1) - 12 = 0
Đặt x2 + x + 1 = t
<=> t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t + 4)(t - 3) = 0
<=> (x2 + x + 1 + 4)(x2 + x + 1 - 3) = 0
<=> [(x2 + x + 1/4) + 19/4](x2 + 2x - x - 2) = 0
<=> [(x2 + 1/2)2 + 19/4](x + 2)(x - 1) = 0
<=> (x + 2)(x - 1) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)
Vậy S = {-2; 1}
\(\left(x-1\right)\left(x+1\right)-x\left(x+3\right)=0\)
\(\Rightarrow x^2-1-x^2-3x=0\Rightarrow-1=3x\Rightarrow x=-\dfrac{1}{3}\)
\(\left(x-1\right)\left(x+2\right)-x\left(x+3\right)=0\)
\(\Rightarrow x^2-1-x^2-3x=0\)
\(\Rightarrow3x=-1\Rightarrow x=-\dfrac{1}{3}\)