Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{2}{3}x-\frac{1}{5}\right).\left(\frac{3}{5}x+\frac{2}{3}\right)< 0\)
\(TH1:\frac{2}{3}x-\frac{1}{5}< 0\)
\(\frac{2}{3}x< \frac{1}{5}\)
\(x< \frac{1}{5}:\frac{2}{3}\)
\(x< \frac{3}{10}\)
\(TH2:\frac{3}{5}x+\frac{2}{3}< 0\)
\(\frac{3}{5}x< \frac{-2}{3}\)
\(x< \frac{-2}{3}:\frac{3}{5}\)
\(x< \frac{-10}{9}\)
vậy ....
hc tốt
Bài 1:
xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = 1\(\frac{1}{2}\) ; y = -1
a) \(\left(x-\frac{3}{2}\right)\left(2x+1\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-\frac{3}{2}>0\\2x+1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-\frac{3}{2}< 0\\2x+1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>\frac{3}{2}\\x>\frac{-1}{2}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
Vậy \(x>\frac{3}{2}\) hoặc \(x< \frac{-1}{2}\) \(\left(x\in Q\right)\)
b) \(\left(2-x\right)\left(\frac{4}{5}-x\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 2\\x>\frac{4}{5}\end{cases}}\) hoặc \(\hept{\begin{cases}x>2\\x< \frac{4}{5}\end{cases}}\)
\(\Leftrightarrow\frac{4}{5}< x< 2\) hoặc \(2< x< \frac{4}{5}\) (loại)
Vậy \(\frac{4}{5}< x< 2\) \(\left(x\in Q\right)\)
1 +1 = 3, 3 voi 3 la 4, 4 voi 1 la ba, 3 ngon tay that deu
a. | x - 1/7 | + 3/7 = 0
<=> | x - 1/7 | = - 3/7
Mà \(\left|x-\frac{1}{7}\right|\ge0\forall x\)
=> Không có x tm đề bài
b. | x + 1/4 | - 3/4 = 5%
<=> | x + 1/4 | = 4/5
<=> \(\orbr{\begin{cases}x+\frac{1}{4}=\frac{4}{5}\\x+\frac{1}{4}=-\frac{4}{5}\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{11}{20}\\x=-\frac{21}{20}\end{cases}}\)
c. | - x + 2/5 | + 1/2 = 3,5
<=> | - x + 2/5 | = 3
<=> \(\orbr{\begin{cases}-x+\frac{2}{5}=3\\-x+\frac{2}{5}=-3\end{cases}}\)<=>\(\orbr{\begin{cases}x=-\frac{13}{5}\\x=\frac{17}{5}\end{cases}}\)
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
a) (2 - x).(4/5 - x) < 0
=> 2 - x và 4/5 - x là 2 số trái dấu
Mà 2 - x > 4/5 - x
=> 2 - x > 0; 4/5 - x < 0
=> 2 > x; 4/5 < x
Vậy 4/5 < x < 2 thỏa mãn đề bài
b) lm tương tự
Bài này ta ko tìm ra giá trị cụ thể vì x thuộc Q, ko fai thuộc Z