K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2022

Answer:

Có \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{cases}}\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\Rightarrow4x\ge0\Rightarrow x\ge0\)

Dấu "=" xảy ra khi

`=>x+1+x+2+x+3=4x`

`=>(x+x+x)+(1+2+3)=4x`

`=>3x+6=4x`

`=>3x-4x=-6

`=>-x=-6`

`=>x=6`

9 tháng 4 2016

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

9 tháng 4 2016

ủng hộ avt395879_60by60.jpg nha s4.jpg 

a: \(P\left(x\right)=2x^3+x^2+x+2\)

\(Q\left(x\right)=x^3+x^2+x+1\)

b: \(P\left(-1\right)=2\cdot\left(-1\right)+1-1+2=0\)

\(Q\left(-1\right)=-1+1-1+1=0\)

Do đó: x=-1 là nghiệm chung của P(x), Q(x)

21 tháng 5 2022

\(P\left(x\right)=2x^3-2x+x^2+3x+2\)

\(P\left(x\right)=2x^3+x^2+x+2\)

\(Q\left(x\right)=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)

\(Q\left(x\right)=x^3+x^2+x+1\)

__________________________________________________

\(P\left(-1\right)=2.\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+2\)

\(P\left(-1\right)=0\)

\(Q\left(-1\right)=\left(-1\right)^3+\left(-1\right)^2+\left(-1\right)+1\)

\(Q\left(-1\right)=0\)

Vậy x = -1  là nghiệm của P(x),Q(x)

a) Đặt A(x)=0

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow4x=1\)

hay \(x=\frac{1}{4}\)

Vậy: \(x=\frac{1}{4}\) là nghiệm của đa thức A(x)=4x-1

b) Đặt B(x)=0

\(\Leftrightarrow4x-1-2x-3=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

Vậy: x=2 là nghiệm của đa thức B(x)=4x-1-2x-3

c) Đặt C(x)=0

\(\Leftrightarrow\left(4x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=1\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{4}\\x=\frac{3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{1}{4};\frac{3}{2}\right\}\) là nghiệm của đa thức C(x)=(4x-1)(2x-3)

d) Đặt D(x)=0

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow x^2=1\)

hay \(x=\pm1\)

Vậy: \(x=\pm1\) là nghiệm của đa thức \(D\left(x\right)=x^2-1\)

e) Đặt E(x)=0

\(\Leftrightarrow x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\) là nghiệm của đa thức \(E\left(x\right)=x^2-4x\)

f) Đặt F(x)=0

\(\Leftrightarrow4x-8x^2=0\)

\(\Leftrightarrow4x\left(1-2x\right)=0\)

\(4\ne0\)

nên \(\left[{}\begin{matrix}x=0\\1-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\) là nghiệm của đa thức \(F\left(x\right)=4x-8x^2\)

g)G(x)=x^3-4x=0

=>x(x^2-4)=0

=>\(\left[{}\begin{matrix}x=0\\x^2-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=4\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\x=\sqrt{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy nghiệm của đa thức G(x) là 0 hoặc 2

h) H(x)=5x^3-4x^2-3x^3+3x^2-2x^3+x=0

=>(5x^3-3x^3-2x^3)+(-4x^2+3x^2)+x

=>x-x^2=0

=>x(1-x)

=>\(\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0 hoặc 1

8 tháng 8 2019

Đăng ít một thôi bạn :v

a) 3x - (3 - 2x) = 0

3x - 3 + 2x = 0

5x - 3 = 0

5x = 0 + 3

5x = 3

x = 3/5

b) (x + 2).3 - 4x.3 = 0

3.(x + 2) - 12.x = 0

3[x + 2 - (4x)] = 0

x + 2 - 4 = 0

-3x + 2 = 0

-3x = 0 - 2

-3x = -2

x = 2/3

c) (x - 2)(x - 4)(1 - 7x) = 0

x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0

x = 0 + 2         x = 0 + 4          -7x = 0 - 1

x = 2               x = 4                 -7x = -1

                                                 x = 1/7

d) 4x2 - 1/4 = 0

4x2 = 0 + 1/4

4x2 = 1/4

x2 = 1/4 : 4

x2 = 1/16

x2 = (1/4)2

x = 1/4 hoặc x = -1/4

e) -3x2 + 48 = 0

3x2 - 48 = 0

3x2 = 0 + 48 

3x2 = 48

x2 = 48 : 3

x2 = 16

x2 = 42

x = 4 hoặc x = -4

g) 3(1/2 - 1/3x)3 - 1/9 = 0

3(1/2 - x/3)3 - 1/9 = 0

3(1/2 - x/3)3 = 0 + 1/9

3(1/2 - x/3)3 = 1/9

(1/2 - x/3)3 = 1/9 : 3

(1/2 - x/3)3 = 1/27

(1/2 - x/3)= (1/3)3

1/2 - x/3 = 1/3

-x/3 = 1/3 - 1/2

-x/3 = -1/6

-x = -1/6.3

-x = -3/6 = -1/2

x = -1/2

m) 4x3 + 5x4 = 0

x3(4 + 5x) = 0

x = 0 hoặc 4 + 5x = 0

x = 0          5x = 0 - 4

                  5x = -4

                  x = -4/5

h) -x3 + 1/64x = 0

-x3 + x/64 = 0

x/64 - x3 = 0

x(1/64 - x3) = 0

x = 0 hoặc 1/64 - x2 = 0

x = 0           -x2 = 0 - 1/64

                   -x2 = -1/64

                    x2 = 1/64 = -+1/8

k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0

x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0

x4 + 2x2 + 3 + 3x3 + 3x = 0

(x3 + 2x2 + 3)(x + 1) = 0

Mà x3 + 2x2 + 3 # 0 nên

x + 1 = 0

x = -1

8 tháng 8 2019

c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)

Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)

\(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)

Vậy \(x=2;x=4\)\(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)

d) \(4x^2-\frac{1}{4}\)

Cho \(4x^2-\frac{1}{4}=0\)

\(4x^2=0+\frac{1}{4}\)

\(4x^2=\frac{1}{4}\)

\(x^2=\frac{1}{4}:4\)

\(x^2=\frac{1}{16}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)

Vậy \(x=\frac{1}{4}\)\(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)

e) \(-3x^2+48\)

Cho \(-3x^2+48=0\)

\(-3x^2=0-48\)

\(-3x^2=-48\)

\(x^2=\left(-48\right):\left(-3\right)\)

\(x^2=16\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

Vậy \(x=4\)\(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)

Mình chỉ làm 3 câu thôi nhé.

Chúc bạn học tốt!

20 tháng 6 2017

a, \(x^2+4x-5=x^2+2x+2x+4-9\)

\(=\left(x^2+2x\right)+\left(2x+4\right)-9\)

\(=x.\left(x+2\right)+2.\left(x+2\right)-9\)

\(=\left(x+2\right)^2-9\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-9\ge-9\) với mọi giá trị của \(x\in R\).

Để \(\left(x+2\right)^2-9=-9\) thì \(\left(x+2\right)^2=0\Rightarrow x=-2\)

Vậy.......

b, \(4x^2+4x-3=4x^2+2x+2x+1-4\)

\(=2x.\left(2x+1\right)+\left(2x+1\right)-4\)

\(=\left(2x+1\right)^2-4\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2-4\ge-4\) với mọi giá trị của \(x\in R\).

Để \(\left(2x+1\right)^2-4=-4\) thì \(\left(2x+1\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)

Vậy.........

c, \(x^2+x+1=x^2+\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x.\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}.\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).

Để \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\) thì \(\left(x+\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{-1}{2}\)

Vậy.........

Chúc bạn học tốt!!!

Các câu còn lại làm tương tự!!

20 tháng 6 2017

a) A = x2 + 4x - 5

A = x2 + 4x + 4 +1 = ( x + 2 )2 + 1 \(\ge\) 1 với mọi x

MinA = 1 khi và chỉ khi x = -2

b) B = 4x2 + 4x - 3

B = 4x2 + 4x + 1 - 4

B = ( 2x+1 )2 - 4 \(\ge\) -4 với mọi x

MinB = -4 khi và chỉ khi x = \(\dfrac{-1}{2}\)

c) C = x2 + x + 1

C = x2 + x + \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)

C = ( x + \(\dfrac{1}{2}\) )2 + \(\dfrac{3}{4}\) \(\ge\) \(\dfrac{3}{4}\) với mọi x

MinC = \(\dfrac{3}{4}\) khi và chỉ khi x = \(-\dfrac{1}{2}\)

d) D = 2x2 + 4x + 8

D = 2 . ( x2 + 2x + 4 )

D = 2. ( x2 + 2x + 1 + 3 )

D = 2. \(\left[\left(x+1\right)^2+3\right]\)

D = 2.( x+1 )2 + 6 \(\ge\) 6 với mọi x

MinD = 6 khi và chỉ khi x = -1

e) E = x2 + x

E = x2 + x + \(\dfrac{1}{4}\) - \(\dfrac{1}{4}\)

E = \(\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\) \(\ge\) \(-\dfrac{1}{4}\) với mọi x

MinE = \(-\dfrac{1}{4}\) khi và chỉ khi x = \(\dfrac{-1}{2}\)

13 tháng 5 2018

a) \(P_{\left(x\right)}=2x^3-2x+x^2+3x+2\)

\(P_{\left(x\right)}=2x^3+x^2+x+2\)

\(Q_{\left(x\right)}=4x^3-3x^2-3x+4x-3x^3+4x^2+1\)

\(Q_{\left(x\right)}=x^3+x^2+x+1\)

b) \(P_{\left(x\right)}+Q_{\left(x\right)}=\left(2x^3+x^2+x+2\right)+\left(x^3+x^2++x+1\right)\)

                            \(=3x^3+2x^2+2x+3\)

13 tháng 5 2018

pls giúp mink với :(