Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 8:
ĐK \(\hept{\begin{cases}x\ne0\\x\ne3\end{cases}}\)
\(A=\frac{x^2}{\left(x-3\right)}.\frac{\left(x-3\right)^2}{x}-4=x\left(x-3\right)-4=x^2-3x-4=\left(x-\frac{3}{2}\right)^2-\frac{25}{4}\\ \)
a) \(A< -6\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{1}{4}< 0\) vô nghiệm
b) A>=-25/4 khi x=3/2
1)trước khi rút gọn bạn cần tìm điều kiện để có phân thức này như
+)Điều kiện: \(\left\{{}\begin{matrix}x-1\ne0\\x^2-1\ne\\x+1\ne0\end{matrix}\right.0}\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
rồi bạn rút gọn
2) với \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) khi đó bạn thay x vào biểu thức A thì tìm đc giá trị
3) bạn tự làm đc :))
(\(\dfrac{x+1}{x-1}\)-- \(\dfrac{x^2+2x+9}{x^2-1}\)).\(\dfrac{x+1}{5}\)=(\(\dfrac{\left(x+1\right)^2}{x^2-1}\)--\(\dfrac{x^2+2x+9}{x^2-1}\)):\(\dfrac{x+1}{5}\)
=\(\dfrac{-8}{x^2-1}\):\(\dfrac{x+1}{5}\)=\(\dfrac{-8}{5\left(x-1\right)}\)
Cố gắng lên bạn nhé!
a) ĐK \(\left\{{}\begin{matrix}x-3\ne0\\x+3\ne0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne-3\\x\ne0\end{matrix}\right.\)
b) \(A=\left(\dfrac{x}{x-3}-\dfrac{x}{x+3}\right).\dfrac{x^2+6x+9}{6x}\)
\(A=\dfrac{x\left(x+3\right)-x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}\)
\(A=\dfrac{6x}{\left(x-3\right)\left(x+3\right)}.\dfrac{\left(x-3\right)^2}{6x}=\dfrac{x-3}{x+3}\)
c) \(A=\dfrac{x-3}{x+3}=\dfrac{x+3-6}{x+3}=1-\dfrac{6}{x+3}\)
Để A nguyên khi \(6⋮\left(x+3\right)\Rightarrow\left(x+3\right)\inƯ\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Để A là nguyên dương thì \(\dfrac{6}{x+3}< 1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=-1\\x+3=-2\\x+3=-3\\x+3=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-5\\x=-6\\x=-9\end{matrix}\right.\)
Trong app này có cả bộ đề thi + thi thử bạn thử xem nha! https://giaingay.com.vn/downapp.html
a: ĐK của A là x<>-3; x<>2
ĐKXĐ của B là x<>3
DKXĐ của C là x<>0; x<>4/3
ĐKXĐ của D là x<>-2
ĐKXĐ của E là x<>2; x<>-2
ĐKXĐ của F là x<>2
b,c:
\(A=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
Để A=0 thì 2=0(loại)
\(B=\dfrac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x+3}{x-3}\)
Để B=0 thì x+3=0
=>x=-3
\(C=\dfrac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\dfrac{3x+4}{x}\)
Để C=0 thì 3x+4=0
=>x=-4/3
\(D=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}=\dfrac{x+2}{2}\)
Để D=0 thì x+2=0
=>x=-2(loại)
\(E=\dfrac{x\left(2-x\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{-x}{x+2}\)
Để E=0 thì x=0
\(F=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
Để F=0 thì 3=0(loại)
\(P=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
\(P=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\left(1\right)\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2}{xy+xz}+\frac{y^2}{xy+zy}+\frac{z^2}{xz+yz}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)
\(\Leftrightarrow P\ge\frac{3}{2}\)
Vậy \(P_{min}=\frac{3}{2}\)
Dấu " = " xảy ra khi x = y= z
Áp dụng BĐT Netbitt ta có Vì x,y,z >0 nên
\(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)
Dấu ''='' xảy ra khi x = y = z > 0
Ta có
x2 + y2 - xy = 8
<=> 2x2 + 2y2 - 2xy = 16
<=> x2 + y2 + (x - y)2 = 16
<=> M = 16 - (x - y)2 \(\le\)16
Vậy max là 16
Ta lại có
2x2 + 2y2 - 2xy = 16
<=> 2x2 + 2y2 = 16 + 2xy
<=> 3(x2 + y2) = 16 + (x + y)2 \(\ge16\)
<=> 3M\(\ge\)16
<=> M \(\ge\frac{16}{3}\)
Vậy min là \(\frac{16}{3}\)