Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để\(\frac{2}{\left(x-2^2\right)+2}\)là lớn nhất thì \(\left(x-2\right)^2+2\)nhỏ nhất
\(\left(x-2\right)^2\ge0\)với mọi x
\(\left(x-2\right)^2+2\ge2\)với mọi x
Vậy GTNN của \(\left(x-2\right)^2+2=2\)
Vậy GTLN của \(\frac{2}{\left(x-2\right)^2+2}=1\)tại \(x=2\)
\(A=\frac{2}{\left(x-2\right)^2+2}\le1\)
Dấu "=" xảy ra khi \(x=2\)
+) Với x = 0 ta có: G= 0
+) Với x khác 0
G đạt giá trị bé nhất <=> 1/G đạt giá trị lớn nhất
<=> \(\frac{x^2+5x+1}{x}\) đạt giá trị lớn nhất
Ta có: \(\frac{x^2+5x+1}{x}=x+5+\frac{1}{x}=\frac{x^2+1}{x}+5\ge\frac{2x}{x}+5=7\)
=> \(\frac{1}{G}\) đạt giá trị bé nhất là 7
=> G đạt giá trị lớn nhất là 1/7 > 0 khi đó x = 1.
\(D=\frac{x^2-2}{5x}< 0\Leftrightarrow\)\(x^2-2\)và 5x trái dấu
\(TH1:\hept{\begin{cases}x^2-2>0\\5x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>2\\x< 0\end{cases}}\Leftrightarrow x< 2\)
\(TH2:\hept{\begin{cases}x^2-2< 0\\5x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 2\\x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2< x< 2\\x>0\end{cases}}\Leftrightarrow0< x< 2\)
\(E=\frac{x-2}{x-6}< 0\Leftrightarrow\hept{\begin{cases}x-2>0\\x-6< 0\end{cases}}\Leftrightarrow2< x< 6\)
\(F=\frac{x^2-1}{x^2}< 0\Leftrightarrow x^2-1< 0\Leftrightarrow-1< x< 1\)
\(\left(x-2\right)^2\ge0\\ \Leftrightarrow\left(x-2\right)^2+2\ge2\\ \Leftrightarrow\dfrac{2}{\left(x-2\right)^2+2}\le\dfrac{2}{2}=1\\ \text{Dấu }"="\text{ xảy ra khi }\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(GTLN\text{ của }A=1\text{ khi }x=2\)