Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(12x^3-7x^2-14x+14): (4x-5)= (3x^2+2x-1)+9: (4x-5). Để (12x^3-7x^2-14x+14)chia hết cho (4x-5) thì 9 phải chia hết cho(4x-5).=>4x-5 thuộc vào ước của 9=+-1;+-3;+-9.xét từng giá trị để tìm x thỏa mãn khi x<0. Sau đó kết luận.
đặt A=x3+y3+z3+kxyz : (x+y+z) ta được
A=(x+y+z).[x2+y2+z2-xy-xz-yz-yz(k+2)]-yz(x+z)(k+3)
để phép chia ko dư thì
-yz(x+z)(k+3)=0 (với mọi x,y,z)
do đó k+3=0 <=>k=-3
Mình kiếm không thấy, mấy bạn có thể copy ra cho mình được không?
Bài 1 A=xyz+xz-zy-z+xy+x-y-1
thay các gtri x=-9, y=-21 và z=-31 vào là đc
=> A=-7680
Bài 2:a) n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
b) 49n+77n-29n-1
=\(49^n-1+77^n-29^n\)
=\(\left(49-1\right)\left(49^{n-1}+49^{n-2}+...+49+1\right)+\left(77-29\right)\left(79^{n-1}+..+29^n\right)\)
=48(\(49^{n-1}+...+1+77^{n-1}+...+29^{n-1}\))
=> tích trên chia hết 48
c) 35x-14y+29-1=7(5x-2y)+7.73
=7(5x-2y+73) tích trên chia hết cho 7
=. ĐPCM
đặt phép chia ,để phép chia là phép chia hết thì dư=0 .....=>m=-3
hoặc có thể dễ nhận thấy m=-3 sẽ có hđt x^3+y^3+z^3-3xyz =(x+y+z)(x^2+y^2+z^2-xy-yz-zx) chia hết cho (x+y+z)
- Quẵng đường viên bi A dơi trong 4s là: \(S_{A\left(4s\right)}=\frac{1}{2}\cdot10\cdot4^2=80\left(m\right)\)
- Vì sau khi bi A rơi được 4 giây thì khoảng cách giữa hai viên bi là 35m nên quãng đường bi B dơi là: \(S_{B\left(4-\Delta t\right)}=80-35=45\left(m\right)\)
- Suy ra: \(S_{B\left(4-\Delta t\right)}=\frac{1}{2}\cdot10\cdot\left(4-\Delta t\right)^2=45\\ \Rightarrow\left(4-\Delta t\right)^2=9\\ \Rightarrow4-\Delta t=3\Rightarrow\Delta t=1\left(s\right)\)
Cách 1 : Chia \(f(x)\)cho x2 + x + 1
Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)
Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)
Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :
\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)
\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)
Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k + 1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1
m=-3 có trong mấy cái hàng đẳng thức đáng nhớ
tụi nó chắc ko học HĐT của 3 số